
Mark A Hoggarth Pt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/725649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intramuscular lipid concentration increased in localized regions of the lumbar muscles following 60 day bedrest. Spine Journal, 2022, 22, 616-628.	0.6	6
2	New insights into intrinsic foot muscle morphology and composition using ultraâ€highâ€field (7-Tesla) magnetic resonance imaging. BMC Musculoskeletal Disorders, 2021, 22, 97.	0.8	8
3	Lumbar muscle atrophy and increased relative intramuscular lipid concentration are not mitigated by daily artificial gravity after 60-day head-down tilt bed rest. Journal of Applied Physiology, 2021, 131, 356-368.	1.2	13
4	Trunk Muscle Characteristics: Differences Between Sedentary Adults With and Without Unilateral Lower Limb Amputation. Archives of Physical Medicine and Rehabilitation, 2021, 102, 1331-1339.	0.5	4
5	Intermittent short-arm centrifugation is a partially effective countermeasure against upright balance deterioration following 60-day head-down tilt bed rest. Journal of Applied Physiology, 2021, 131, 689-701.	1.2	13
6	Gluteal Muscle Atrophy and Increased Intramuscular Lipid Concentration Are Not Mitigated by Daily Artificial Gravity Following 60-Day Head-Down Tilt Bed Rest. Frontiers in Physiology, 2021, 12, 745811.	1.3	8
7	Magnetization Transfer Ratio and Morphometrics of the Spinal Cord Associates with Surgical Recovery in Patients with Degenerative Cervical Myelopathy. World Neurosurgery, 2020, 144, e939-e947.	0.7	13
8	Confirming the geography of fatty infiltration in the deep cervical extensor muscles in whiplash recovery. Scientific Reports, 2020, 10, 11471.	1.6	18
9	Foot exercise plus education versus wait and see for the treatment of plantar heel pain (FEET trial): a protocol for a feasibility study. Journal of Foot and Ankle Research, 2020, 13, 20.	0.7	2
10	Muscle fat infiltration following whiplash: A computed tomography and magnetic resonance imaging comparison. PLoS ONE, 2020, 15, e0234061.	1.1	20
11	Macromolecular changes in spinal cord white matter characterize whiplash outcome at 1-year post motor vehicle collision. Scientific Reports, 2020, 10, 22221.	1.6	2
12	Development of 3D method to assess intramuscular spatial distribution of fat infiltration in patients with rotator cuff tear: reliability and concurrent validity. BMC Musculoskeletal Disorders, 2019, 20, 295.	0.8	9
13	Geography of Lumbar Paravertebral Muscle Fatty Infiltration. Spine, 2019, 44, 1294-1302.	1.0	41
14	MRI measures of fat infiltration in the lower extremities following motor incomplete spinal cord injury: Reliability and potential implications for muscle activation. , 2016, 2016, 5451-5456.		9
15	Advancements in Imaging Technology: Do They (or Will They) Equate to Advancements in Our Knowledge of Recovery in Whiplash?. Journal of Orthopaedic and Sports Physical Therapy, 2016, 46, 862-873.	1.7	9
16	Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI. BMC Musculoskeletal Disorders, 2016, 17, 234.	0.8	30
17	Potential associations between chronic whiplash and incomplete spinal cord injury. Spinal Cord Series and Cases, 2015, 1, .	0.3	27
18	Planar IGRT dose reduction: A practical approach. Practical Radiation Oncology, 2015, 5, e239-e244.	1.1	2

#	Article	IF	CITATIONS
19	The Geography of Fatty Infiltrates Within the Cervical Multifidus and Semispinalis Cervicis in Individuals With Chronic Whiplash-Associated Disorders. Journal of Orthopaedic and Sports Physical Therapy, 2015, 45, 281-288.	1.7	43
20	Muscle–fat MRI: 1.5 tesla and 3.0 tesla versus histology. Muscle and Nerve, 2014, 50, 170-176.	1.0	81
21	Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results. International Journal of Radiation Oncology Biology Physics, 2014, 89, 525-531.	0.4	24
22	Letter to the editor regarding Smuck M, Cristostomo RA, Demirjian R, etÂal. Morphologic change in the lumbar spine after lumbar medial branch radiofrequency neurotomy: a quantitative radiological study Spine Journal, 2014, 14, 1088-1089.	0.6	2
23	Medical Image Registration Using the Fourier Transform. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2014, 03, 49-55.	0.3	3
24	Dual energy imaging using a clinical on-board imaging system. Physics in Medicine and Biology, 2013, 58, 4331-4340.	1.6	31
25	SU-E-J-44: Dual Energy Subtraction Imaging to Improve Tumor Visibility at Oblique Angles. Medical Physics, 2012, 39, 3662-3662.	1.6	2
26	SU-E-J-91: FFT Based Medical Image Registration Using a Graphics Processing Unit (GPU). Medical Physics, 2012, 39, 3673-3673.	1.6	1
27	TH-E-218-02: Deformable Registration Techniques for Dual Energy Imaging in Clinical Radiotherapy. Medical Physics, 2012, 39, 4017-4018.	1.6	0
28	SU-E-J-93: Fourier Transform-Based Medical Image Registration. Medical Physics, 2012, 39, 3673-3674.	1.6	0
29	Dose-Volume Factors to Select Patient-Specific Image-Guidance Action Thresholds in Prostate Cancer. Technology in Cancer Research and Treatment, 2011, 10, 211-217.	0.8	0
30	Clinical Application of a Novel Dose Deformable Algorithm for the Evaluation of Critical Organ Dose Distributions in Multiple Brachytherapy Treatment Fractions. Brachytherapy, 2010, 9, S66.	0.2	0
31	An Analysis of the Efficiency of Autosegmentation Software in Contouring Normal Tissues during 3-Dimensional Image-Based Brachytherapy Planning. Brachytherapy, 2010, 9, S67-S68.	0.2	1
32	SU-GG-T-25: Improving Deformable Dose Registration of Brachytherapy by Incorporating CT Scan Masking. Medical Physics, 2010, 37, 3189-3189.	1.6	0
33	SU-GG-T-399: Automated Colony Counting Using Color and Image Processing Techniques. Medical Physics, 2008, 35, 2816-2816.	1.6	0
34	Alpha-particle Monte Carlo simulation for microdosimetric calculations using a commercial spreadsheet. Physics in Medicine and Biology, 2007, 52, 1909-1922.	1.6	15
35	Characterization of the Theorectical Radiation Dose Enhancement from Nanoparticles. Technology in Cancer Research and Treatment, 2007, 6, 395-401.	0.8	143
36	The Effects of Reconditioning Exercises Following Prolonged Bed Rest on Lumbopelvic Muscle Volume and Accumulation of Paraspinal Muscle Fat. Frontiers in Physiology, 0, 13, .	1.3	1