Mengzhou Liao

List of Publications by Citations

Source: https://exaly.com/author-pdf/7256349/mengzhou-liao-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31	1,714	19	33
papers	citations	h-index	g-index
33	2,187 ext. citations	10	4.27
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
31	Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS Continuous Films. <i>ACS Nano</i> , 2017 , 11, 12001-12007	16.7	264
30	Argon Plasma Induced Phase Transition in Monolayer MoS. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10216-10219	16.4	234
29	Highly Sensitive MoS Humidity Sensors Array for Noncontact Sensation. <i>Advanced Materials</i> , 2017 , 29, 1702076	24	223
28	Boundary activated hydrogen evolution reaction on monolayer MoS. <i>Nature Communications</i> , 2019 , 10, 1348	17.4	168
27	Graphene-Contacted Ultrashort Channel Monolayer MoS Transistors. <i>Advanced Materials</i> , 2017 , 29, 170)2572	144
26	Current-driven magnetization switching in a van der Waals ferromagnet FeGeTe. <i>Science Advances</i> , 2019 , 5, eaaw8904	14.3	119
25	Precisely Aligned Monolayer MoS Epitaxially Grown on h-BN basal Plane. <i>Small</i> , 2017 , 13, 1603005	11	73
24	Twist angle-dependent conductivities across MoS/graphene heterojunctions. <i>Nature Communications</i> , 2018 , 9, 4068	17.4	59
23	Precise control of the interlayer twist angle in large scale MoS homostructures. <i>Nature Communications</i> , 2020 , 11, 2153	17.4	55
22	Rolling Up a Monolayer MoS2 Sheet. <i>Small</i> , 2016 , 12, 3770-4	11	39
21	Integrated Flexible and High-Quality Thin Film Transistors Based on Monolayer MoS2. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500379	6.4	37
20	Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. <i>Applied Physics Letters</i> , 2017 , 111, 263106	3.4	31
19	Patterned Peeling 2D MoS2 off the Substrate. ACS Applied Materials & amp; Interfaces, 2016, 8, 16546-5	09.5	28
18	In Situ Oxygen Doping of Monolayer MoS for Novel Electronics. <i>Small</i> , 2020 , 16, e2004276	11	21
17	Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. <i>Physical Review B</i> , 2018 , 97,	3.3	21
16	Ultra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. <i>Nature Materials</i> , 2021 ,	27	21
15	Enhancing and controlling valley magnetic response in MoS/WS heterostructures by all-optical route. <i>Nature Communications</i> , 2019 , 10, 4226	17.4	20

LIST OF PUBLICATIONS

14	Robust spin-valley polarization in commensurate MoS2/graphene heterostructures. <i>Physical Review B</i> , 2018 , 97,	3.3	20
13	Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges. <i>Physical Review Letters</i> , 2018 , 120, 216601	7.4	19
12	Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. <i>Physical Review B</i> , 2018 , 97,	3.3	18
11	Bandgap broadening at grain boundaries in single-layer MoS2. <i>Nano Research</i> , 2018 , 11, 6102-6109	10	17
10	Large area growth of monolayer MoS2film on quartz and its use as a saturable absorber in laser mode-locking. <i>Semiconductor Science and Technology</i> , 2017 , 32, 025013	1.8	16
9	2D proximate quantum spin liquid state in atomic-thin BRuCl 3. 2D Materials, 2019, 6, 015014	5.9	16
8	The Effect of Twin Grain Boundary Tuned by Temperature on the Electrical Transport Properties of Monolayer MoS2. <i>Crystals</i> , 2016 , 6, 115	2.3	15
7	Strongly distinct electrical response between circular and valley polarization in bilayer transition metal dichalcogenides. <i>Physical Review B</i> , 2019 , 99,	3.3	10
6	Free-Standing Single-Molecule Thick Crystals Consisting of Linear Long-Chain Polymers. <i>Nano Letters</i> , 2017 , 17, 1655-1659	11.5	7
5	Giant Valley Coherence at Room Temperature in 3R WS with Broken Inversion Symmetry. <i>Research</i> , 2019 , 2019, 6494565	7.8	7
4	Strong and tunable interlayer coupling of infrared-active phonons to excitons in van der Waals heterostructures. <i>Physical Review B</i> , 2019 , 99,	3.3	6
3	Scratching lithography for wafer-scale MoS2 monolayers. 2D Materials, 2020 , 7, 045028	5.9	4
2	Pressure-mediated contact quality improvement between monolayer MoS 2 and graphite. <i>Chinese Physics B</i> , 2019 , 28, 017301	1.2	2
1	Hot-Pressed Two-Dimensional Amorphous Metals and Their Electronic Properties. <i>Crystals</i> , 2022 , 12, 616	2.3	