
Camila Pinheiro Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7256328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor. Carbohydrate Polymers, 2016, 151, 760-769.	5.1	57
2	Electroanalysis of Pharmaceuticals on Boronâ€Doped Diamond Electrodes: A Review. ChemElectroChem, 2019, 6, 2350-2378.	1.7	45
3	Current overview and perspectives on carbon-based (bio)sensors for carbamate pesticides electroanalysis. TrAC - Trends in Analytical Chemistry, 2020, 124, 115779.	5.8	43
4	Multi-walled carbon nanotubes–cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen. Journal of Electroanalytical Chemistry, 2016, 772, 9-16.	1.9	42
5	Electrochemical determination diethylstilbestrol by a multi-walled carbon nanotube/cobalt phthalocyanine film electrode. Sensors and Actuators B: Chemical, 2017, 239, 933-942.	4.0	41
6	Multifunctional biosensors based on peptide–polyelectrolyte conjugates. Physical Chemistry Chemical Physics, 2016, 18, 3223-3233.	1.3	30
7	Chlorhexidine digluconate on chitosan-magnetic iron oxide nanoparticles modified electrode: Electroanalysis and mechanistic insights by computational simulations. Sensors and Actuators B: Chemical, 2017, 240, 417-425.	4.0	23
8	Self-Assembly of Peptide Nanostructures onto an Electrode Surface for Nonenzymatic Oxygen Sensing. Journal of Physical Chemistry C, 2015, 119, 1038-1046.	1.5	22
9	Imipramine sensing in pharmaceutical formulations using boron-doped diamond electrode. Journal of Electroanalytical Chemistry, 2017, 788, 118-124.	1.9	21
10	Sensing of formetanate pesticide in fruits with a boron-doped diamond electrode. Microchemical Journal, 2018, 142, 24-29.	2.3	21
11	Electroanalysis of Imidacloprid Insecticide in River Waters Using Functionalized Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. Journal of the Electrochemical Society, 2018, 165, B431-B435.	1.3	20
12	Computational modeling of functionalized multi-walled carbon nanotubes dispersed in polyethylenimine for electrochemical sensing of acetaminophen. Sensors and Actuators B: Chemical, 2017, 246, 969-978.	4.0	18
13	Electrochemical sensor based on multi-walled carbon nanotubes for imidacloprid determination. Analytical Methods, 2021, 13, 2124-2136.	1.3	18
14	Dispersion of multi-walled carbon nanotubes in [BMIM]PF 6 for electrochemical sensing of acetaminophen. Materials Science and Engineering C, 2018, 88, 148-156.	3.8	17
15	Chemical modification of a nanocrystalline TiO2 film for efficient electric connection of glucose oxidase. Journal of Colloid and Interface Science, 2010, 346, 442-447.	5.0	16
16	Chitosan-magnetite nanocomposite as a sensing platform to bendiocarb determination. Analytical and Bioanalytical Chemistry, 2018, 410, 7229-7238.	1.9	14
17	Polyethylenimine-Multi-Walled Carbon Nanotubes/Glassy Carbon Electrode as an Efficient Sensing Platform for Promethazine. Journal of the Electrochemical Society, 2020, 167, 107506.	1.3	12
18	Nanocrystal growth, magnetic and electrochemical properties of NiZn ferrite. Journal of Alloys and Compounds, 2018, 738, 206-217.	2.8	9

#	Article	IF	CITATIONS
19	Experimental and computational studies of the interactions between carbon nanotubes and ionic liquids used for detection of acetaminophen. Sensors and Actuators B: Chemical, 2018, 277, 640-646.	4.0	8
20	Structural, photophysical and electrochemical properties of a novel cardanol-based salophen ligand and its Mn(II) complex. Journal of Molecular Structure, 2019, 1181, 279-286.	1.8	8
21	Understanding the dipyrone oxidation allying electrochemical and computational approaches. Analytica Chimica Acta, 2019, 1051, 49-57.	2.6	8
22	Evaluation of degradation mechanism of chlorhexidine by means of Density Functional Theory calculations. Computational Biology and Chemistry, 2017, 71, 82-88.	1.1	4