
Elmar Pöselt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7255999/publications.pdf Version: 2024-02-01

FIMAD DÃOSFIT

#	Article	IF	CITATIONS
1	Wideâ€Angle Scattering Halo Analysis and the Evolution of Oriented Amorphous Structure after Elongation Jumps in Some Elastomers. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	2
2	Structure transition of aliphatic m,6-Polyurethane during heating investigated using in-situ WAXS, SAXS, and FTIR. Polymer, 2022, 254, 125072.	3.8	10
3	<scp>SSA</scp> fractionation of thermoplastic polyurethanes. Polymer Crystallization, 2021, 4, .	0.8	6
4	Melting behavior of polymorphic MDI/BD-block TPU investigated by using in-situ SAXS/WAXS and FTIR techniques. Hydrogen bonding formation causing the inhomogeneous melt. Polymer Testing, 2021, 96, 107065.	4.8	13
5	Polymorphic microstructure of MDI/BD-block polyurethane as determined by temperature-sensitive conformation variation. Soft Matter, 2021, 17, 9447-9456.	2.7	4
6	Shortâ€Term Morphology Relaxation of Thermoplastic Polyurethane Elastomers after Fast Strain Steps. Macromolecular Materials and Engineering, 2020, 305, 2000386.	3.6	3
7	Effects and limits of highly efficient nucleating agents in thermoplastic polyurethane. Polymer, 2019, 180, 121676.	3.8	15
8	Destruction and Reorganization of Physically Cross-Linked Network of Thermoplastic Polyurethane Depending on Its Glass Transition Temperature. ACS Applied Polymer Materials, 2019, 1, 3074-3083.	4.4	17
9	Melting, Solidification, and Crystallization of a Thermoplastic Polyurethane as a Function of Hard Segment Content. Macromolecular Chemistry and Physics, 2019, 220, 1900074.	2.2	20
10	Scattering of X-rays during melting and solidification of thermoplastic polyurethane. Graphite as nucleating agent and stabilizer of the colloidal melt. Polymer, 2018, 153, 565-573.	3.8	8
11	Crystallization of hard segments in MDI/BD-based polyurethanes deformed at elevated temperature and their dependence on the MDI/BD content. European Polymer Journal, 2017, 97, 423-436.	5.4	33
12	Thermoplastic polyurethanes with varying hard-segment components. Mechanical performance and a filler-crosslink conversion of hard domains as monitored by SAXS. European Polymer Journal, 2017, 94, 340-353.	5.4	26
13	Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes. CrystEngComm, 2017, 19, 4720-4733.	2.6	28
14	Structures of Hard Phases in Thermoplastic Polyurethanes. Macromolecules, 2016, 49, 7350-7358.	4.8	36
15	Tailoring the Morphology and Melting Points of Segmented Thermoplastic Polyurethanes by Self-Nucleation. Macromolecules, 2016, 49, 7952-7964.	4.8	63
16	Nanostructure of thermally aged thermoplastic polyurethane and its evolution under strain. European Polymer Journal, 2016, 81, 569-581.	5.4	17
17	Morphological Changes under Strain for Different Thermoplastic Polyurethanes Monitored by SAXS Related to Strain at Break. Macromolecular Chemistry and Physics, 2015, 216, 2318-2330.	2.2	17
18	Quasiperiodicity and the nanoscopic morphology of some polyurethanes. Journal of Applied Crystallography, 2015, 48, 313-317.	4.5	11

#	Article	IF	CITATIONS
19	Melting and solidification of thermoplastic polyurethanes as a function of nucleating agents. Nano Select, 0, , .	3.7	1