Lucian A Lucia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7255948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 2010, 110, 3479-3500.	23.0	4,701
2	One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. Journal of Materials Chemistry, 2009, 19, 7137.	6.7	288
3	Toward a Better Understanding of the Lignin Isolation Process from Wood. Journal of Agricultural and Food Chemistry, 2006, 54, 5939-5947.	2.4	208
4	Comparative Evaluation of Three Lignin Isolation Protocols for Various Wood Species. Journal of Agricultural and Food Chemistry, 2006, 54, 9696-9705.	2.4	205
5	Hydrothermal Carbonization of Corncob Residues for Hydrochar Production. Energy & Fuels, 2015, 29, 872-876.	2.5	146
6	Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Applied Bio Materials, 2021, 4, 140-162.	2.3	139
7	Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites – A review. Carbohydrate Polymers, 2018, 198, 249-260.	5.1	137
8	Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chemical Engineering Journal, 2019, 364, 226-243.	6.6	125
9	Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation. Journal of Membrane Science, 2017, 525, 89-98.	4.1	111
10	Deep Eutectic Solvents (DESs) for the Isolation of Willow Lignin (Salix matsudana cv. Zhuliu). International Journal of Molecular Sciences, 2017, 18, 2266.	1.8	99
11	Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydrate Polymers, 2019, 206, 281-288.	5.1	92
12	A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites. Green Chemistry, 2014, 16, 3195-3201.	4.6	90
13	On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species. Phytochemistry, 2007, 68, 2570-2583.	1.4	88
14	Propensity of Lignin to Associate: Light Scattering Photometry Study with Native Lignins. Biomacromolecules, 2008, 9, 3362-3369.	2.6	88
15	Soy protein–nanocellulose composite aerogels. Cellulose, 2013, 20, 2417-2426.	2.4	85
16	Cellulose Nanocrystals/Cellulose Core-in-Shell Nanocomposite Assemblies. Langmuir, 2009, 25, 13250-13257.	1.6	81
17	Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. Journal of Controlled Release, 2017, 260, 213-225.	4.8	77
18	General Spectroscopic Protocol to Obtain the Concentration of the Superoxide Anion Radical. Industrial & Engineering Chemistry Research, 2009, 48, 9331-9334.	1.8	74

#	Article	IF	CITATIONS
19	Chemicals and energy from biomass. Canadian Journal of Chemistry, 2006, 84, 960-970.	0.6	73
20	The enhanced mechanical properties of a covalently bound chitosanâ€multiwalled carbon nanotube nanocomposite. Journal of Applied Polymer Science, 2009, 113, 466-472.	1.3	72
21	On the Surface Interactions of Proteins with Lignin. ACS Applied Materials & Interfaces, 2013, 5, 199-206.	4.0	71
22	A novel fabrication of monodisperse melamine–formaldehyde resin microspheres to adsorb lead (II). Chemical Engineering Journal, 2016, 288, 745-757.	6.6	69
23	A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose, 2012, 19, 1945-1956.	2.4	67
24	Green Modification of Surface Characteristics of Cellulosic Materials at the Molecular or Nano Scale: A Review. BioResources, 2015, 10, .	0.5	65
25	A Fiber-Aligned Thermal-Managed Wood-Based Superhydrophobic Aerogel for Efficient Oil Recovery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16428-16439.	3.2	65
26	Chemical and Spatial Differentiation of Syringyl and Guaiacyl Lignins in Poplar Wood via Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2011, 83, 7020-7026.	3.2	61
27	Effects of hardwood structural and chemical characteristics on enzymatic hydrolysis for biofuel production. Bioresource Technology, 2012, 110, 232-238.	4.8	60
28	Synthesis of soy protein–lignin nanofibers by solution electrospinning. Reactive and Functional Polymers, 2014, 85, 221-227.	2.0	58
29	Carboxyl Groups in Wood Fibers. 1. Determination of Carboxyl Groups by Headspace Gas Chromatography. Industrial & Engineering Chemistry Research, 2003, 42, 5440-5444.	1.8	56
30	Enhanced Aggregation Behavior of Antimony(V) Porphyrins in Polyfluorinated Surfactant/Clay Hybrid Microenvironment. Journal of Physical Chemistry B, 2003, 107, 3789-3797.	1.2	55
31	Nature-Inspired Liquid Infused Systems for Superwettable Surface Energies. ACS Applied Materials & Interfaces, 2019, 11, 21275-21293.	4.0	55
32	A Novel Cellulose Nanocrystals-Based Approach To Improve the Mechanical Properties of Recycled Paper. ACS Sustainable Chemistry and Engineering, 2013, 1, 1584-1592.	3.2	54
33	High-Strength Antibacterial Chitosan–Cellulose Nanocrystal Composite Tissue Paper. Langmuir, 2019, 35, 104-112.	1.6	51
34	Consequences of the nanoporosity of cellulosic fibers on their streaming potential and their interactions with cationic polyelectrolytes. Cellulose, 2007, 14, 655-671.	2.4	50
35	Isolation and characterization of lignins from <i>Eucalyptus grandis</i> Hill ex Maiden and <i>Eucalyptus globulus</i> Labill. by enzymatic mild acidolysis (EMAL). Holzforschung, 2008, 62, 24-30.	0.9	49
36	Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydrate Polymers, 2019, 208, 495-503.	5.1	49

#	Article	IF	CITATIONS
37	Oxygen Delignification Chemistry and Its Impact on Pulp Fibers. Journal of Wood Chemistry and Technology, 2003, 23, 13-29.	0.9	45
38	An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds. RSC Advances, 2017, 7, 13678-13688.	1.7	45
39	Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Carbohydrate Polymers, 2020, 234, 115898.	5.1	45
40	Fluorine-based surface decorated cellulose nanocrystals as potential hydrophobic and oleophobic materials. Cellulose, 2015, 22, 397-406.	2.4	44
41	Active Tara Gum/PVA Blend Films with Curcumin-Loaded CTAC Brush-TEMPO-Oxidized Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2018, 6, 8926-8934.	3.2	44
42	Polymerization Topochemistry of Cellulose Nanocrystals: A Function of Surface Dehydration Control. Langmuir, 2014, 30, 14670-14679.	1.6	43
43	Understanding shape and morphology of unusual tubular starch nanocrystals. Carbohydrate Polymers, 2016, 151, 666-675.	5.1	42
44	Understanding the pyrolysis of CCA-treated wood. Journal of Analytical and Applied Pyrolysis, 2008, 81, 60-64.	2.6	41
45	Metal-based bacterial cellulose of sandwich nanomaterials for anti-oxidation electromagnetic interference shielding. Materials and Design, 2016, 112, 374-382.	3.3	41
46	Improving the physical and chemical functionality of starch-derived films with biopolymers. Journal of Applied Polymer Science, 2006, 100, 2542-2548.	1.3	40
47	Characterization of Lignin Extracted from Willow by Deep Eutectic Solvent Treatments. Polymers, 2018, 10, 869.	2.0	40
48	Novel Preparation and Characterization of Cellulose Microparticles Functionalized in Ionic Liquids. Langmuir, 2009, 25, 10116-10120.	1.6	39
49	A comparison of the pyrolysis behavior of selected β-O-4 type lignin model compounds. Journal of Analytical and Applied Pyrolysis, 2017, 125, 185-192.	2.6	39
50	High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose, 2018, 25, 3377-3391.	2.4	39
51	Metal to ligand charge transfer photochemistry of Re(I)-alkyl complexes. Inorganica Chimica Acta, 1993, 208, 103-106.	1.2	38
52	Intramolecular Energy Transfer to trans-Stilbene. Journal of Physical Chemistry A, 1998, 102, 5577-5584.	1.1	38
53	Quantitative 31P NMR detection of oxygen-centered and carbon-centered radical species. Bioorganic and Medicinal Chemistry, 2006, 14, 4017-4028.	1.4	38
54	Water-Wettable Polypropylene Fibers by Facile Surface Treatment Based on Soy Proteins. ACS Applied Materials & Interfaces, 2013, 5, 6541-6548.	4.0	37

#	Article	IF	CITATIONS
55	Copper nanoparticles-sputtered bacterial cellulose nanocomposites displaying enhanced electromagnetic shielding, thermal, conduction, and mechanical properties. Cellulose, 2016, 23, 3117-3127.	2.4	37
56	Preparation and Characterization of Activated Carbon from Hydrochar by Phosphoric Acid Activation and its Adsorption Performance in Prehydrolysis Liquor. BioResources, 2017, 12, .	0.5	36
57	Kinetic Modeling of Formic Acid Pulping of Bagasse. Journal of Agricultural and Food Chemistry, 2008, 56, 3097-3101.	2.4	35
58	Insights into the Potential of Hardwood Kraft Lignin to Be a Green Platform Material for Emergence of the Biorefinery. Polymers, 2020, 12, 1795.	2.0	35
59	The influence of the chemical and structural features of xylan on the physical properties of its derived hydrogels. Soft Matter, 2011, 7, 1090-1099.	1.2	34
60	Adsorption of Chemically Modified Xylans on Eucalyptus Pulp and Its Effect on the Pulp Physical Properties. Industrial & Engineering Chemistry Research, 2011, 50, 1138-1145.	1.8	34
61	Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy. RSC Advances, 2016, 6, 41420-41427.	1.7	34
62	Outer Sphere Metal-to-Ligand Charge Transfer in Organometallic Ion Pairs. Inorganic Chemistry, 1997, 36, 6224-6234.	1.9	33
63	Alkali extraction of hemicellulose from depithed corn stover and effects on soda-AQ pulping. BioResources, 2011, 6, 196-206.	0.5	33
64	A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environmental Science & Technology, 2022, 56, 2071-2095.	4.6	33
65	Innovating Generation of Nanocellulose from Industrial Hemp by Dual Asymmetric Centrifugation. ACS Sustainable Chemistry and Engineering, 2020, 8, 1850-1858.	3.2	32
66	The structural changes of lignin and lignin–carbohydrate complexes in corn stover induced by mild sodium hydroxide treatment. RSC Advances, 2014, 4, 10845.	1.7	31
67	Two Schiff-base fluorescence probes based on triazole and benzotriazole for selective detection of Zn2+. Sensors and Actuators B: Chemical, 2016, 227, 296-303.	4.0	31
68	Physical Study of the Primary and Secondary Photothermal Events in Gold/Cellulose Nanocrystals (AuNP/CNC) Nanocomposites Embedded in PVA Matrices. ACS Sustainable Chemistry and Engineering, 2017, 5, 1601-1609.	3.2	31
69	Highly stretchable and bio-based sensors for sensitive strain detection of angular displacements. Cellulose, 2019, 26, 3401-3413.	2.4	31
70	Influence of Natural Biomaterials on the Absorbency and Transparency of Starch-Derived Films:  An Optimization Study. Industrial & Engineering Chemistry Research, 2007, 46, 6480-6485.	1.8	30
71	Synthesis, Characterization, and Evaluation of Chitosan-Complexed Starch Nanoparticles on the Physical Properties of Recycled Paper Furnish. ACS Applied Materials & amp; Interfaces, 2013, 5, 11029-11037.	4.0	30
72	C-C Bond Fragmentation as a Probe for Photoinduced Intramolecular Electron Transfer. The Journal of Physical Chemistry, 1995, 99, 1961-1968.	2.9	29

#	Article	IF	CITATIONS
73	The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils. Reactive and Functional Polymers, 2014, 85, 142-150.	2.0	29
74	Magnetic Cu0.5Co0.5Fe2O4 ferrite nanoparticles immobilized in situ on the surfaces of cellulose nanocrystals. Cellulose, 2015, 22, 2571-2587.	2.4	29
75	Structural reconstruction strategies for the design of cellulose nanomaterials and aligned wood cellulose-based functional materials – A review. Carbohydrate Polymers, 2020, 247, 116722.	5.1	29
76	The role of heteropolysaccharides in developing oxidized cellulose nanofibrils. Carbohydrate Polymers, 2016, 144, 187-195.	5.1	28
77	Highly flexible, transparent, and conductive silver nanowire-attached bacterial cellulose conductors. Cellulose, 2018, 25, 3189-3196.	2.4	28
78	Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Industrial Crops and Products, 2021, 168, 113582.	2.5	28
79	The influence of lignin–carbohydrate complexes on the cellulase-mediated saccharification I: Transgenic black cottonwood (western balsam poplar, California poplar) P. trichocarpa including the xylan down-regulated and the lignin down-regulated lines. Fuel, 2014, 119, 207-213.	3.4	27
80	A New Class of Biobased Paper Dry Strength Agents: Synthesis and Characterization of Soy-Based Polymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 524-532.	3.2	27
81	The Topochemistry of Cellulose Nanofibrils as a Function of Mechanical Generation Energy. ACS Sustainable Chemistry and Engineering, 2020, 8, 1471-1478.	3.2	27
82	Ecofriendly and innovative processing of hemp hurds fibers for tissue and towel paper. BioResources, 2020, 15, 706-720.	0.5	27
83	Direct Observation of Ultrafast C-C Bond Fragmentation in a Diamine Radical Cation. The Journal of Physical Chemistry, 1995, 99, 11801-11804.	2.9	26
84	Investigation of the Chemical Basis for Inefficient Lignin Removal in Softwood Kraft Pulp during Oxygen Delignification. Industrial & Engineering Chemistry Research, 2003, 42, 4269-4276.	1.8	26
85	Bioengineering tunable porosity in bacterial nanocellulose matrices. Soft Matter, 2019, 15, 9359-9367.	1.2	26
86	New Insights into Lignin Modification During Chlorine Dioxide Bleaching Sequences (I): Chlorine Dioxide Delignification. Journal of Wood Chemistry and Technology, 2005, 24, 201-219.	0.9	25
87	Adsorption of Glycinin and β-Conglycinin on Silica and Cellulose: Surface Interactions as a Function of Denaturation, pH, and Electrolytes. Biomacromolecules, 2012, 13, 387-396.	2.6	25
88	Capillary flooding of wood with microemulsions from Winsor I systems. Journal of Colloid and Interface Science, 2012, 381, 171-179.	5.0	25
89	Soy Protein-Based Polyelectrolyte Complexes as Biobased Wood Fiber Dry Strength Agents. ACS Sustainable Chemistry and Engineering, 2014, 2, 2267-2274.	3.2	25
90	Spectral Monitoring of the Formation and Degradation of Polysulfide Ions in Alkaline Conditions. Industrial & Engineering Chemistry Research, 2006, 45, 7388-7392.	1.8	24

#	Article	IF	CITATIONS
91	Products and Functional Group Distributions in Pyrolysis Oil of Chromated Copper Arsenate (CCA)-Treated Wood, as Elucidated by Gas Chromatography and a Novel ³¹ P NMR-Based Method. Industrial & Engineering Chemistry Research, 2007, 46, 5258-5264.	1.8	24
92	Direct observation of carbon-carbon bond fragmentation in .alphaamino alcohol radical cations. The Journal of Physical Chemistry, 1993, 97, 9078-9080.	2.9	23
93	Photophysics of Tungsten and Molybdenum Arylcarbyne Complexes. Observation of the Lowest Excited State by Laser Flash Photolysis. Inorganic Chemistry, 1996, 35, 7769-7775.	1.9	23
94	Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy. Cellulose, 2005, 12, 35-41.	2.4	23
95	Quantitative Analyses of Lignin Hydrothermolysates from Subcritical Water and Water–Ethanol Systems. Industrial & Engineering Chemistry Research, 2014, 53, 10328-10334.	1.8	23
96	New insights into the material chemistry of polycaprolactone-grafted cellulose nanofibrils/polyurethane nanocomposites. Cellulose, 2016, 23, 2457-2473.	2.4	23
97	Tuning the Morphology of Microparticles from Spray Drying of Cellulose Nanocrystal Suspensions by Hydrophobic Lignin. ACS Sustainable Chemistry and Engineering, 2019, 7, 5376-5384.	3.2	23
98	Lipase-catalyzed laurate esterification of cellulose nanocrystals and their use as reinforcement in PLA composites. Cellulose, 2020, 27, 6263-6273.	2.4	23
99	Titanium Dioxide Catalyzed Photodegradation of Lignin in Industrial Effluents. Industrial & Engineering Chemistry Research, 2004, 43, 7996-8000.	1.8	22
100	Understanding the pyrolysis of CCA-treated wood. Journal of Analytical and Applied Pyrolysis, 2008, 82, 140-144.	2.6	22
101	RAFT synthesis of celluloseâ€ <i>g</i> â€polymethylmethacrylate copolymer in an ionic liquid. Journal of Applied Polymer Science, 2013, 127, 4840-4849.	1.3	21
102	One-Pot Solvothermal Synthesis of Graphene Nanocomposites for Catalytic Conversion of Cellulose to Ethylene Glycol. ACS Sustainable Chemistry and Engineering, 2019, 7, 11110-11117.	3.2	21
103	Facile Preparation and Characteristic Analysis of Sulfated Cellulose Nanofibril via the Pretreatment of Sulfamic Acid-Glycerol Based Deep Eutectic Solvents. Nanomaterials, 2021, 11, 2778.	1.9	21
104	Mechanistic Investigation of Rice Straw Lignin Subunit Bond Cleavages and Subsequent Formation of Monophenols. ACS Sustainable Chemistry and Engineering, 2018, 6, 430-437.	3.2	20
105	Ultra-efficient photo-triggerable healing and shape-memory nanocomposite materials doped with copper sulfide nanoparticles. Composites Science and Technology, 2020, 199, 108371.	3.8	20
106	The morphology, self-assembly, and host-guest properties of cellulose nanocrystals surface grafted with cholesterol. Carbohydrate Polymers, 2020, 233, 115840.	5.1	20
107	Cholesterol-modified lignin: A new avenue for green nanoparticles, meltable materials, and drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110685.	2.5	19
108	Lignocellulosic Fibers from Renewable Resources Using Green Chemistry for a Circular Economy. Global Challenges, 2021, 5, 2000065.	1.8	19

#	Article	IF	CITATIONS
109	A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse. Carbohydrate Polymers, 2022, 295, 119856.	5.1	19
110	Graft polymerization of ε-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology. Nordic Pulp and Paper Research Journal, 2014, 29, 58-68.	0.3	18
111	Pseudo-Janus Zn/Al-based nanocomposites for Cr(VI) sorption/remediation and evolved photocatalytic functionality. Chemical Engineering Journal, 2015, 277, 150-158.	6.6	18
112	Synthesis and Characterization of Alkali Lignin-based Hydrogels from Ionic Liquids. BioResources, 2017, 12, .	0.5	18
113	Informal STEM education will accelerate the bioeconomy. Nature Biotechnology, 2019, 37, 103-104.	9.4	18
114	Crustacean shell-based biosorption water remediation platforms: Status and perspectives. Journal of Environmental Management, 2019, 231, 757-762.	3.8	18
115	Photooxidation of a Conjugated Diene by an Exciplex Mechanism:Â Amplification via Radical Chain Reactions in the Perylene Diimide-Photosensitized Oxidation of α-Terpinene. Journal of Physical Chemistry A, 1998, 102, 9095-9098.	1.1	17
116	New insights into the fundamental nature of lignocellulosic fiber surface charge. Journal of Colloid and Interface Science, 2004, 275, 392-397.	5.0	17
117	Investigation of the photo-oxidative chemistry of acetylated softwood lignin. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 215-221.	2.0	17
118	Influence of Natural Biomaterials on the Elastic Properties of Starch-Derived Films:Â An Optimization Study. Industrial & Engineering Chemistry Research, 2006, 45, 627-633.	1.8	17
119	Survey of Soy Protein Flour as a Novel Dry Strength Agent for Papermaking Furnishes. Journal of Agricultural and Food Chemistry, 2012, 60, 9828-9833.	2.4	17
120	Unique Dual Functions for Carbon Dots in Emulsion Preparations: Costabilization and Fluorescence Probing. Langmuir, 2015, 31, 9537-9545.	1.6	17
121	Super Stable and Tough Hydrogel Containing Covalent, Crystalline, and Ionic Crossâ€Links. Macromolecular Chemistry and Physics, 2016, 217, 32-38.	1.1	17
122	Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydrate Polymers, 2020, 231, 115709.	5.1	17
123	Remarkable Physical and Thermal Properties of Hydrothermal Carbonized Nanoscale Cellulose Observed from Citric Acid Catalysis and Acetone Rinsing. Nanomaterials, 2020, 10, 1049.	1.9	17
124	Near-Infrared Spectroscopy and Chemometric Analysis for Determining Oxygen Delignification Yield. Journal of Wood Chemistry and Technology, 2008, 28, 122-136.	0.9	16
125	Reinforcement Effects of Inorganic Nanoparticles for Double-Network Hydrogels. Macromolecular Materials and Engineering, 2015, 300, 1290-1299.	1.7	16
126	Near-critical water hydrothermal transformation of industrial lignins to high value phenolics. Journal of Analytical and Applied Pyrolysis, 2016, 120, 297-303.	2.6	16

#	Article	IF	CITATIONS
127	Bentonite-supported nanoscale zero-valent iron granulated electrodes for industrial wastewater remediation. RSC Advances, 2017, 7, 44605-44613.	1.7	16
128	The Effect of the Kraft Pulping Process, Wood Species, and pH on Lignin Recovery from Black Liquor. Fibers, 2022, 10, 16.	1.8	16
129	Adsorption of cationized eucalyptus heteropolysaccharides onto chemical and mechanical pulp fibers. Carbohydrate Polymers, 2015, 123, 324-330.	5.1	15
130	Cage escape yields for photoinduced bimolecular electron transfer reactions of Re(I) complexes. Inorganica Chimica Acta, 1994, 225, 41-49.	1.2	14
131	Chemicals, Materials, and Energy from Biomass: A Review. ACS Symposium Series, 2007, , 2-30.	0.5	14
132	A simple method to tune the gross antibacterial activity of cellulosic biomaterials. Carbohydrate Polymers, 2007, 69, 805-810.	5.1	14
133	Fiber nanotechnology: a new platform for "green―research and technological innovations. Cellulose, 2007, 14, 539-542.	2.4	14
134	Sudanese Agro-residue as a Novel Furnish for Pulp and Paper Manufacturing. BioResources, 2017, 12, .	0.5	14
135	Modeling the pyrolytic behavior of lignin through two representative monomers: Vanillin and acetovanillone. Journal of Analytical and Applied Pyrolysis, 2018, 130, 241-248.	2.6	14
136	Synthesis of Cationic Xylan Derivatives and Application as Strengthening Agents in Papermaking. BioResources, 2018, 13, .	0.5	14
137	In situ 3D bacterial cellulose/nitrogen-doped graphene oxide quantum dot-based membrane fluorescent probes for aggregation-induced detection of iron ions. Cellulose, 2019, 26, 6073-6086.	2.4	14
138	A new protocol for efficient and high yield preparation of cellulose nanofibrils. Cellulose, 2019, 26, 877-887.	2.4	14
139	Novel all-cellulose composite displaying aligned cellulose nanofibers reinforced with cellulose nanocrystals. Tappi Journal, 2011, 10, 19-25.	0.2	14
140	Photoinduced Charge Separation Promoted by Ring Opening of a Piperazine Radical Cation. Journal of the American Chemical Society, 1996, 118, 3057-3058.	6.6	13
141	The Structure of Lignin of Corn Stover and its Changes Induced by Mild Sodium Hydroxide Treatment. BioResources, 2014, 9, .	0.5	13
142	Acid-Generated Soy Protein Hydrolysates and Their Interfacial Behavior on Model Surfaces. Biomacromolecules, 2014, 15, 4336-4342.	2.6	13
143	Development of a Highly Efficient Pretreatment Sequence for the Enzymatic Saccharification of Loblolly Pine Wood. ACS Sustainable Chemistry and Engineering, 2016, 4, 3669-3678.	3.2	13
144	Evaluation of Sudanese Sorghum and Bagasse as a Pulp and Paper Feedstock. BioResources, 2017, 12, .	0.5	13

#	Article	IF	CITATIONS
145	Cooperative Electron Transfer Fragmentation Reactions. Amplification of a Photoreaction through A Tandem Chain Fragmentation of Acceptor and Donor Pinacols. Journal of the American Chemical Society, 1998, 120, 439-440.	6.6	12
146	Catalysis of Glucose to 5-Hydroxymethylfurfural using Sn-Beta Zeolites and a BrÃ,nsted Acid in Biphasic Systems. BioResources, 2015, 10, .	0.5	12
147	Supercritical Water-induced Lignin Decomposition Reactions: A Structural and Quantitative Study. BioResources, 2016, 11, .	0.5	12
148	The role of absorbed hemicelluloses on final paper properties and printability. Fibers and Polymers, 2016, 17, 389-395.	1.1	12
149	Starch Derivatives that Contribute Significantly to the Bonding and Antibacterial Character of Recycled Fibers. ACS Omega, 2018, 3, 5260-5265.	1.6	12
150	Modeling pyrolytic behavior of pre-oxidized lignin using four representative β-ether-type lignin-like model polymers. Fuel Processing Technology, 2018, 176, 221-229.	3.7	12
151	Bacterial Superoleophobic Fibrous Matrices: A Naturally Occurring Liquid-Infused System for Oil–Water Separation. Langmuir, 2021, 37, 2552-2562.	1.6	12
152	Comparative Evaluation of Oxygen Delignification Processes for Low- and High-Lignin-Content Softwood Kraft Pulps. Industrial & Engineering Chemistry Research, 2002, 41, 5171-5180.	1.8	11
153	A semi-interpenetrating network polyampholyte hydrogel simultaneously demonstrating remarkable toughness and antibacterial properties. New Journal of Chemistry, 2016, 40, 10520-10525.	1.4	11
154	A feasible approach efficiently redisperse dried cellulose nanofibrils in water: vacuum or freeze drying in the presence of sodium chloride. Cellulose, 2021, 28, 829-842.	2.4	11
155	Toward synergistic reinforced graphene nanoplatelets composite hydrogels with self-healing and multi-stimuli responses. Polymer, 2021, 234, 124228.	1.8	11
156	New Insights into Lignin Modification During Chlorine Dioxide Bleaching Sequences (II): Modifications in Extraction (E) and Chlorine Dioxide Bleaching (D1). Journal of Wood Chemistry and Technology, 2005, 24, 221-237.	0.9	10
157	Quantitative Molecular Structure–Pyrolytic Energy Correlation for Hardwood Lignins. Energy & Fuels, 2012, 26, 1315-1322.	2.5	10
158	A Novel Approach for Rapid Preparation of Monophasic Microemulsions That Facilitates Penetration of Woody Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 1665-1672.	3.2	10
159	Analytical Pyrolysis Characteristics of Enzymatic/Mild Acidolysis Lignin (EMAL). BioResources, 2018, 13,	0.5	10
160	Spectroscopic Interrogation of the Acetylation Selectivity of Hardwood Biopolymers. Starch/Staerke, 2019, 71, 1900086.	1.1	10
161	Underwater Superoleophobic Matrix-Formatted Liquid-Infused Porous Biomembranes for Extremely Efficient Deconstitution of Nanoemulsions. ACS Applied Materials & Interfaces, 2020, 12, 50996-51006.	4.0	10
162	3D Photoinduced Spatiotemporal Resolution of Cellulose-Based Hydrogels for Fabrication of Biomedical Devices. ACS Applied Bio Materials, 2020, 3, 5007-5019.	2.3	10

#	Article	IF	CITATIONS
163	Hydrothermal carbonization of soybean hulls for the generation of hydrochar: A promising valorization pathway for low value biomass. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100571.	1.7	10
164	Fundamental insights into the oxidation of lignocellulosics obtained from singlet oxygen photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168, 205-209.	2.0	9
165	New Insights into Lignin Modification during Chlorine Dioxide Bleaching Sequences (III): The Impact of Modifications in the (EO) versus E Stage on the D1Stage. Journal of Wood Chemistry and Technology, 2005, 25, 133-147.	0.9	9
166	The Impact of Xylanase and Hot Acid Pretreatment on HexAs in Eucalyptus Kraft Pulp Bleaching. Journal of Wood Chemistry and Technology, 2015, 35, 239-250.	0.9	9
167	Hydrothermal-Controlled Conversion of Black Liquor Acid Sediment Directly to Phenolics. Energy & Fuels, 2017, 31, 1638-1643.	2.5	9
168	Secondary pyrolysis pathway of monomeric aromatics resulting from oxidized β-O-4 lignin dimeric model compounds. Fuel Processing Technology, 2017, 168, 11-19.	3.7	9
169	Use of TOF-SIMS for the analysis of surface metals in H2O2-bleached lignocellulosic fibers. Pure and Applied Chemistry, 2001, 73, 2047-2058.	0.9	9
170	Analytical Pyrolysis Pathways of Guaiacyl Glycerol-β-guaiacyl Ether by Py-GC/MS. BioResources, 2016, 11,	0.5	9
171	PHOTOYELLOWING OF UNTREATED AND ACETYLATED ASPEN CHEMITHERMOMECHANICAL PULP UNDER ARGON, AMBIENT, AND OXYGEN ATMOSPHERES. Journal of Wood Chemistry and Technology, 2001, 21, 343-360.	0.9	8
172	Relationship between the Kraft Green Liquor Sulfide Chemical Form and the Physical and Chemical Behavior of Softwood Chips during Pretreatment. Industrial & Engineering Chemistry Research, 2003, 42, 3831-3837.	1.8	8
173	TMAH-pyrolysis – gas chromatography – mass spectrometry analysis of residual lignin changes in softwood kraft pulp during oxygen delignification. Canadian Journal of Chemistry, 2004, 82, 1197-1202.	0.6	8
174	Kinetic Profiling of Green Liquor-Modified Kraft Pulping. Industrial & Engineering Chemistry Research, 2005, 44, 2948-2954.	1.8	8
175	Hydrothermal Carbonization of Nanofibrillated Cellulose: A Pioneering Model Study Demonstrating the Effect of Size on Final Material Qualities. ACS Sustainable Chemistry and Engineering, 2020, 8, 1823-1830.	3.2	8
176	Impact factors for flux decline in ultrafiltration of lignocellulosic hydrolysis liquor. Separation and Purification Technology, 2020, 240, 116597.	3.9	8
177	New Insights into Lignin Modification during Chlorine Dioxide Bleaching Sequences (IV): The Impact of Modifications in the (EP) and (EOP) Stages on the D1 Stage. Journal of Wood Chemistry and Technology, 2005, 25, 149-170.	0.9	7
178	Atom efficient thermal and photocuring combined treatments for the synthesis of novel eco-friendly grid-like zein nanofibres. RSC Advances, 2014, 4, 61573-61579.	1.7	7
179	Ionic Liquid-Based Molecular Oxygen Oxidation of Eucalyptus Kraft Lignin to Obtain a Suite of Monomeric Aromatic By-Products. Journal of Wood Chemistry and Technology, 2015, 35, 280-290.	0.9	7
180	Molecular Changes in Corn Stover Lignin Resulting from Pretreatment Chemistry. BioResources, 2017, 12, .	0.5	7

#	Article	IF	CITATIONS
181	Efficient green approaches for the preparation of physically crosslinked chitin gel materials by freeze-induced self-assembly. Journal of Molecular Liquids, 2020, 320, 114392.	2.3	7
182	Improved stress relaxation resistance of composites films by soy protein polymer. Composites Communications, 2021, 24, 100644.	3.3	7
183	Improved method for evaluation of cellulose degradation. Journal of Wood Science, 2003, 49, 285-288.	0.9	6
184	Kraft Green Liquor Pretreatment of Softwood Chips. 1. Chemical Sorption Profiles. Industrial & Engineering Chemistry Research, 2003, 42, 646-652.	1.8	6
185	Chemical Basis for a Selectivity Threshold to the Oxygen Delignification of Kraft Softwood Fiber As Supported by the Use of Chemical Selectivity Agents. Industrial & Engineering Chemistry Research, 2004, 43, 2291-2295.	1.8	6
186	Application of Photo-oxidative Processes for the Remediation of Bleached Kraft Pulp Effluent. Industrial & Engineering Chemistry Research, 2010, 49, 11214-11220.	1.8	6
187	Coacervated liposoluble fructan-based host–guest microspheres as unique drug delivery materials. RSC Advances, 2015, 5, 67759-67766.	1.7	6
188	Ultrasound-assisted Xylanase Treatment of Chemi-Mechanical Poplar Pulp. BioResources, 2016, 11, .	0.5	6
189	Chitosan-Based Reagents Endow Recycled Paper Fibers with Remarkable Physical and Antimicrobial Properties. Industrial & Engineering Chemistry Research, 2016, 55, 7282-7286.	1.8	6
190	Enhancement of Lignin Extraction of Poplar by Treatment of Deep Eutectic Solvent with Low Halogen Content. Polymers, 2020, 12, 1599.	2.0	6
191	A quantitative comparison of the precipitation behavior of lignin from sweetgum and pine kraft black liquors. BioResources, 2020, 15, 5464-5480.	0.5	6
192	Enhancement of delignification by ionic liquids pretreatment and modification of hardwood kraft pulp in preparation for bleaching. BioResources, 2020, 15, 6299-6308.	0.5	6
193	Chemical Response of Hardwood Oligosaccharides as a Statistical Function of Isolation Protocol. Journal of Agricultural and Food Chemistry, 2008, 56, 2953-2959.	2.4	5
194	Chemical Elucidation of Structurally Diverse Willow Lignins. BioResources, 2015, 11, .	0.5	5
195	Quantitative Study of the Interfacial Adsorption of Cellullase to Cellulose. Journal of Physical Chemistry C, 2015, 119, 14160-14166.	1.5	5
196	Effect of side-chain structure on hydrothermolysis of lignin model compounds. Fuel Processing Technology, 2017, 166, 124-130.	3.7	5
197	Ionic Liquid-Mediated Homogeneous Esterification of Cinnamic Anhydride to Xylans. International Journal of Molecular Sciences, 2017, 18, 2502.	1.8	5
198	Unique alkyl ketene dimer Pickeringâ€based dispersions: Preparation and application to paper sizing. Journal of Applied Polymer Science, 2018, 135, 45730.	1.3	5

#	Article	IF	CITATIONS
199	Organic Solvent Isolation and Structural Characterization of Willow Lignin. BioResources, 2018, 13, .	0.5	5
200	Simultaneously improved chitin gel formation and thermal stability promoted by TiO2. Journal of Molecular Liquids, 2021, 328, 115332.	2.3	5
201	Fabrication of cross-linked starch-based nanofibrous mat with optimized diameter. Tappi Journal, 2019, 18, 381-389.	0.2	5
202	Investigation of the Chemistry of Oxygen Delignification of Low Kappa Softwood Kraft Pulp using an Organic/Inorganic Chemical Selectivity System. Journal of Wood Chemistry and Technology, 2005, 25, 95-108.	0.9	4
203	Chemical Study of the Variation in the Bleaching and Pulping Response of Predominantly Juvenile and Mature Northern Black Spruce Fractions. Industrial & Engineering Chemistry Research, 2005, 44, 1652-1659.	1.8	4
204	Tuning Solute Partitioning Coefficients in a Biphasic Ionic Liquid/Water System to Facilitate Extraction of Lignin-Oxidized Aromatics. BioResources, 2015, 10, .	0.5	4
205	Soy flour detackification of stickies from paper recycling. Nordic Pulp and Paper Research Journal, 2015, 30, 541-545.	0.3	4
206	Catalytic Stepwise Pyrolysis of Technical Lignin. BioResources, 2017, 12, .	0.5	4
207	Sudanese Dicots as Alternative Fiber Sources for Pulp and Papermaking. Drvna Industrija, 2018, 69, 175-182.	0.3	4
208	Silverâ€doped carbon fibers at low loading capacity that display high antibacterial properties. Journal of Chemical Technology and Biotechnology, 2019, 94, 1628-1637.	1.6	4
209	Esterified Polysaccharide Composites that Display Super Absorbency from Highly Favorable Hydrogen and Ionic Interactions. Industrial & Engineering Chemistry Research, 2020, 59, 14234-14241.	1.8	4
210	Improved reswelling behaviors and thermal stability of polyvinyl alcohol composite gels assisted by salt. Materials Letters, 2020, 281, 128743.	1.3	4
211	Understanding the effect of severity factor of prehydrolysis on dissolving pulp production using prehydrolysis kraft pulping and elemental chlorine-free bleaching sequence. BioResources, 2020, 15, 4323-4336.	0.5	4
212	Breaking the Oxygen Delignification Barrier: Lignin Reactivity and Inactivity. ACS Symposium Series, 2001, , 92-107.	0.5	3
213	A novel and efficient approach for imparting magnetic susceptibility to lignocellulosic fibers. Carbohydrate Polymers, 2005, 59, 517-520.	5.1	3
214	Modifying the Functionality of Starch Films with Natural Polymers. ACS Symposium Series, 2007, , 200-218.	0.5	3
215	Kinetics of atom transfer radical polymerization of methyl methacrylate initiated by cellulose chloroacetate in BMIMCI. Chemical Research in Chinese Universities, 2013, 29, 159-165.	1.3	3
216	A preliminary assay of the potential of soy protein isolate and its hydrolysates to provide interfiber bonding enhancements in lignocellulosic furnishes. Reactive and Functional Polymers, 2014, 85, 228-234.	2.0	3

#	Article	IF	CITATIONS
217	Structural elucidation of lignins from corncob acid hydrolysis residue by enzymatic mild acidolysis and deep eutectic solvent pretreatment. BioResources, 2020, 15, 4362-4372.	0.5	3
218	Green synthesis, characterization, and catalytic application of a supported and magnetically isolable copper-iron oxide-sodium alginate. Green Synthesis and Catalysis, 2022, 3, 179-184.	3.7	3
219	Electron Transfer Photofragmentation Reactions in Monolayer Films at the Air/Water Interface. Langmuir, 1998, 14, 3663-3672.	1.6	2
220	Effect of lignin content and magnesium-to-manganese ratio on the selectivity of oxygen delignification in softwood kraft pulp. Pure and Applied Chemistry, 2001, 73, 2059-2065.	0.9	2
221	Ionic Liquids as a New Platform for Fiber Brittleness Removal. BioResources, 2015, 10, .	0.5	2
222	Bioremediation of Dyes Using Ultrafine Membrane Prepared from the Waste Culture of Ganoderma lucidum with in-situ Immobilization of Laccase. BioResources, 2016, 11, .	0.5	2
223	Effect of different headspace concentrations of bornyl acetate on fecundity ofÂgreen peach aphid and balsam woolly adelgid. Scandinavian Journal of Forest Research, 2017, 32, 397-405.	0.5	2
224	High-Bulk Water Dispersible Paper-Based Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 11334-11338.	3.2	2
225	Fractionation and Characterization of Three Main Components from Pennisetum sinese Roxb. (P.) Tj ETQq1 1 0.	784314 rg	gBT_/Overlock
226	Synthesizing Magnetic Support for Laccase Immobilization for the Purification of Pre-hydrolysis Liquor. BioResources, 2017, 13, .	0.5	2
227	Chitin–clay composite gels with enhanced thermal stability prepared in a green and facile approach. Journal of Materials Science, 2021, 56, 3600-3611.	1.7	2
228	Fabrication of magnetic lignin-based adsorbent for removal of methyl orange dye from aqueous solution. BioResources, 2021, 16, 5436-5449.	0.5	2
229	Probing the molecular weights of sweetgum and pine kraft lignin fractions. Tappi Journal, 2021, 20, 381-391.	0.2	2
230	Structural Analysis of Fast-Growing Aspen Alkaline Peroxide Mechanical Pulp Lignin: A Post-Enzymatic Treatment. BioResources, 2015, 11, .	0.5	2
231	Facile synthesis of lignosulfonate-graphene porous hydrogel for effective removal of Cr(VI) from aqueous solution. BioResources, 2019, 14, 7001-7014.	0.5	2
232	Suitable approach using agricultural residues for pulp and paper manufacturing. Nordic Pulp and Paper Research Journal, 2017, 32, 674-682.	0.3	2
233	Staged alkali and hydrogen peroxide treatment of poplar chemi-mechanical pulp. BioResources, 2020, 15, 1062-1073.	0.5	2
234	The effects of lignocellulosic fiber surface area on the dynamics of lignin oxidation and diffusion. Journal of Applied Polymer Science, 2004, 94, 177-181.	1.3	1

#	Article	IF	CITATIONS
235	Oxidative Chemistry of Lignin in Supercritical Carbon Dioxide and Expanded Liquids. ACS Symposium Series, 2007, , 311-331.	0.5	1
236	Polysulfide Distribution During Kraft Pulping. Industrial & Engineering Chemistry Research, 2010, 49, 3983-3985.	1.8	1
237	BIOMASS EDUCATION IN THE TWENTY-FIRST CENTURY. BioResources, 2012, 7, .	0.5	1
238	Potential contribution of anion exclusion to hydroxide penetration in green liquor-modified kraft pulping. Holzforschung, 2014, 68, 617-621.	0.9	1
239	Physico-Chemical Responses of Fraser Fir Induced by Balsam Woolly Adelgid (Homoptera: Adelgidae) Infestation. Journal of Entomological Science, 2016, 51, 94-97.	0.2	1
240	Biomechanical Pulping of Poplar with Crude Enzyme Secreted from Trametes sp. lg-9. BioResources, 2018, 13, .	0.5	1
241	Pulp properties and spent pretreatment solution resulting from reed pulping with a low alkali loading. BioResources, 2021, 16, 2303-2313.	0.5	1
242	Soy flour and soy lecithin improve paper strength and formation. Nordic Pulp and Paper Research Journal, 2016, 31, 407-410.	0.3	1
243	Fundamental molecular characterization and comparison of the O, D0, and E stage effluents from hardwood pulp bleaching. Tappi Journal, 2019, 18, 341-351.	0.2	1
244	Properties of TX-100/n-Butanol/Cyclohexane/Water Microemulsion and Its Osmosis for Wood. Journal of Biobased Materials and Bioenergy, 2011, 5, 197-202.	0.1	1
245	Controlling porosity and density of nanocellulose aerogels for superhydrophobic light materials. Tappi Journal, 2018, 17, 145-153.	0.2	1
246	Using multistage models to evaluate how pulp washing after the first extraction stage impacts elemental chlorine-free bleach demand. Tappi Journal, 2018, 17, 621-630.	0.2	1
247	Soybean peroxidase treatment of ultra-high kappa softwood pulp to enhance yield and physical properties. Tappi Journal, 2020, 19, 437-443.	0.2	1
248	Preparation of an amphoteric lignin copolymer and its value in the papermaking industry. BioResources, 2020, 15, 9625-9641.	0.5	1
249	Evidence for antimicrobial activity in hemp hurds and lignin-containing nanofibrillated cellulose materials. Cellulose, 0, , .	2.4	1
250	A study of anthraquinone-fortified green liquor pretreatment of loblolly pine chips. Holzforschung, 2009, 63, .	0.9	0
251	Preparation and properties of polyurethane/benzyl amylose semiâ€interpenetrating networks. Journal of Applied Polymer Science, 2010, 116, 1299-1305.	1.3	Ο
252	Novel Screening Technique: Integrated Combinatorial Green Chemistry & Life Cycle Analysis (CGC-LCA). BioResources, 2013, 8, .	0.5	0

#	Article	IF	CITATIONS
253	Hemp Is the 21st Century Tobacco. ACS Agricultural Science and Technology, 2021, 1, 283-284.	1.0	0
254	Application of the Protoplast Fusion Technique to Engineer a Recombinant Microorganism to More Efficiently Degrade Chlorophenols. BioResources, 2015, 10, .	0.5	0
255	BioResources: Ten Years of Service for the Progress of the Science and Technology of Lignocellulosic Products. BioResources, 2015, 11, .	0.5	0
256	Producing Hydrochar from Cotton Linter Black Liquor and Performing Alkali Recovery. BioResources, 2017, 12, .	0.5	0
257	The Attraction of Magnetically Susceptible Paper. , 2006, , 209-214.		0