Guo-Ming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7255790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulating On/Off Single-Molecule Magnet Behavior in a Dy(III)-Based Photochromic Complex. Journal of the American Chemical Society, 2020, 142, 2682-2689.	6.6	301
2	Photochromism and photomagnetism in crystalline hybrid materials actuated by nonphotochromic units. Chemical Communications, 2019, 55, 5631-5634.	2.2	160
3	An organic–inorganic hybrid zinc phosphite framework with room temperature phosphorescence. Chemical Communications, 2018, 54, 3712-3714.	2.2	123
4	A Germanate Framework Containing 24-Ring Channels, NiGe Bonds, and Chiral [Ni@Ge14O24(OH)3] Cluster Motifs Transferred from Chiral Metal Complexes. Angewandte Chemie - International Edition, 2005, 44, 6881-6884.	7.2	117
5	Mixed-Ligand Strategy for the Construction of Photochromic Metal–Organic Frameworks Driven by Electron-Transfer Between Nonphotoactive Units. Crystal Growth and Design, 2020, 20, 7350-7355.	1.4	103
6	Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coordination Chemistry Reviews, 2022, 452, 214304.	9.5	91
7	Optically actuating ultra-stable radicals in a large ï€-conjugated ligand constructed photochromic complex. Science China Chemistry, 2021, 64, 432-438.	4.2	71
8	Highly Efficient Blue Phosphorescence from Pillar‣ayer MOFs by Ligand Functionalization. Advanced Materials, 2022, 34, e2107612.	11.1	71
9	An inorganic–organic hybrid framework from the assembly of an electron-rich diphosphonate and electron-deficient tripyridyl moiety. Journal of Materials Chemistry C, 2018, 6, 9341-9344.	2.7	69
10	Luminescent Thermochromism and White-Light Emission of a 3D [Ag ₄ Br ₆] Cluster-Based Coordination Framework with Both Adamantane-like Node and Linker. Inorganic Chemistry, 2021, 60, 4375-4379.	1.9	65
11	Quadruple Photoresponsive Functionality in a Crystalline Hybrid Material: Photochromism, Photomodulated Fluorescence, Magnetism and Nonlinear Optical Properties. Chemistry - A European Journal, 2021, 27, 7842-7846.	1.7	63
12	Template synthesis and photochromism of a layered zinc diphosphonate. CrystEngComm, 2017, 19, 1160-1164.	1.3	62
13	Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal–Organic Framework for Enhanced Tandem Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 940-947.	4.0	58
14	QD-2: A Novel Open-Framework Aluminoborate with Intersecting Three-Dimensional Helical Channels. Inorganic Chemistry, 2008, 47, 5039-5041.	1.9	56
15	Solvated Lanthanide Cationic Template Strategy for Constructing Iodoargentates with Photoluminescence and White Light Emission. Crystal Growth and Design, 2018, 18, 7041-7047.	1.4	56
16	Syntheses, Characterizations, and Crystal Structures of Two New Organically Templated Borates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 336-340.	0.6	51
17	Coordination-driven strategy towards crystalline hybrid photochromic materials <i>via</i> the marriage of a non-photochromic extended dipyridine unit and zincophosphate. Journal of Materials Chemistry C, 2019, 7, 3920-3923.	2.7	50
18	Synthesis and Characterization of QD-3 : The First Organically Templated Aluminoborate with 11-, 12-, and 14-Ring Intersecting Channels. Inorganic Chemistry, 2008, 47, 1270-1272.	1.9	49

#	Article	IF	CITATIONS
19	3D Inorganic Cuprous Iodide Open-Framework Templated by In Situ <i>N</i> -Methylated 2,4,6-Tri(4-pyridyl)-1,3,5-triazine. Crystal Growth and Design, 2017, 17, 3588-3591.	1.4	45
20	The Tri(imidazole)â€Derivative Moiety: A New Category of Electron Acceptors for the Design of Crystalline Hybrid Photochromic Materials. Chemistry - A European Journal, 2021, 27, 1410-1415.	1.7	45
21	Light enhanced proton conductivity in a terbium phosphonate photochromic chain complex. Science China Chemistry, 2021, 64, 1170-1176.	4.2	44
22	Ultrathin metal–organic framework nanosheet arrays and derived self-supported electrodes for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 22597-22602.	5.2	41
23	Light actuated stable radicals of the 9-anthracene carboxylic acid for designing new photochromic complexes. Chemical Communications, 2021, 57, 4295-4298.	2.2	40
24	Inorganic–organic hybrid zinc phosphites with fluorescence/phosphorescence dual emission performances. Journal of Materials Chemistry C, 2018, 6, 10411-10414.	2.7	36
25	Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer. Nature Communications, 2022, 13, 2646.	5.8	35
26	Synthesis and Crystal Structure of a Novel Potassium Borate with an Unprecedented [B12O16(OH)8]4â^' Anion. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 1586-1590.	0.6	34
27	Dual Ligand Strategy for Constructing a Series of d ¹⁰ Coordination Polymers: Syntheses, Structures, Photoluminescence, and Sensing Properties. Crystal Growth and Design, 2018, 18, 1882-1890.	1.4	33
28	Two Photochromic Complexes Assembled by a Nonphotochromic Ligand: Photogenerated Radical Enhanced Room-Temperature Phosphorescence. Inorganic Chemistry, 2021, 60, 108-114.	1.9	33
29	Sb ₆ O ₇ (SO ₄) ₂ : A Promising Ultraviolet Nonlinear Optical Material with an Enhanced Secondâ€Harmonicâ€Generation Response Activated by Sb ^{III} Loneâ€Pair Stereoactivity. Chemistry - A European Journal, 2021, 27, 5880-5884.	1.7	33
30	Linear and Nonlinear Optical Properties of Centrosymmetric Sb ₄ O ₅ SO ₄ and Noncentrosymmetric Sb ₄ O ₄ (SO ₄)(OH) ₂ Induced by Lone Pair Stereoactivity. Inorganic Chemistry. 2021. 60. 11648-11654.	1.9	33
31	Syntheses, structures and efficient visible light-driven photocatalytic properties of layered cuprous halides based on two types of building units. Dalton Transactions, 2018, 47, 6965-6972.	1.6	32
32	An excellent cryogenic magnetic cooler: magnetic and magnetocaloric study of an inorganic frame material. Materials Chemistry Frontiers, 2018, 2, 2327-2332.	3.2	30
33	Two hybrid transition metal triphosphonates decorated with a tripodal imidazole ligand: synthesis, structures and properties. Dalton Transactions, 2017, 46, 808-813.	1.6	29
34	In Situ Ligand Modification Strategy for the Construction of One-, Two-, and Three-Dimensional Heterometallic Iodides. Inorganic Chemistry, 2017, 56, 13785-13793.	1.9	29
35	A pillared-layer strategy to construct water-stable Zn–organic frameworks for iodine capture and luminescence sensing of Fe ³⁺ . Dalton Transactions, 2019, 48, 602-608.	1.6	29
36	Conversion of Enteromorpha prolifera to high-quality liquid oil via deoxy-liquefaction. Journal of Analytical and Applied Pyrolysis, 2013, 104, 494-501.	2.6	28

#	Article	IF	CITATIONS
37	In situ template generation via N-alkylation in the syntheses of open-framework zinc phosphites and phosphate. Dalton Transactions, 2013, 42, 13084.	1.6	28
38	A large magnetocaloric effect in two hybrid Gd-complexes: the synergy of inorganic and organic ligands towards excellent cryo-magnetic coolants. Journal of Materials Chemistry C, 2019, 7, 6352-6358.	2.7	27
39	Room-Temperature Phosphorescence with Excitation-Energy Dependence and External Heavy-Atom Effect in Hybrid Zincophosphites. Inorganic Chemistry, 2019, 58, 9476-9481.	1.9	25
40	Tunable photochromic properties of hybrid solids controlled by the conjugated length of non-photochromic units. Inorganic Chemistry Frontiers, 2019, 6, 2435-2440.	3.0	24
41	An anionic Cd-based coordination polymer exhibiting ion-exchange behavior for photoluminescence and selective dye adsorption. Journal of Luminescence, 2019, 210, 70-74.	1.5	24
42	Synthesis and Characterization of the First $1\hat{a} \in D$ Borate Templated by Transition Metal Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 1192-1196.	0.6	23
43	Multiple Detection Characteristics of Two Zinc Phosphonates: Syntheses, Crystal Structures, and Luminescent Properties. Crystal Growth and Design, 2019, 19, 5326-5333.	1.4	22
44	Tripyridineâ€Derivativeâ€Derived Semiconducting Iodoâ€Argentate/Cuprate Hybrids with Excellent Visibleâ€Lightâ€Induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 269-277.	1.7	22
45	Luminescent Turn-On/Turn-Off Sensing Properties of a Water-Stable Cobalt-Based Coordination Polymer. Crystal Growth and Design, 2021, 21, 2332-2339.	1.4	22
46	Deoxy-Liquefaction of Laminaria japonica to High-Quality Liquid Oil over Metal Modified ZSM-5 Catalysts. Energy & Fuels, 2013, 27, 5207-5214.	2.5	21
47	An open-framework beryllium phosphite with extra-large 18-ring channels. CrystEngComm, 2015, 17, 8414-8417.	1.3	21
48	Series of crystalline beryllium phosphates including new templates generated by in situ N-methylation transformation. CrystEngComm, 2014, 16, 3296.	1.3	20
49	Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil. Bioresource Technology, 2014, 169, 110-118.	4.8	20
50	Zeolitic Open-Framework Borates with Noncentrosymmetric Structures and Nonlinear Optical Properties. Inorganic Chemistry, 2019, 58, 3527-3534.	1.9	20
51	Enhanced Room-Temperature Phosphorescence of an Organic Ligand in 3D Hybrid Materials Assisted by Adjacent Halogen Atom. Inorganic Chemistry, 2020, 59, 972-975.	1.9	20
52	Syntheses and structures of two open-framework zinc phosphites with extra-large 24-ring channels. Solid State Sciences, 2012, 14, 1030-1035.	1.5	19
53	Series of open-framework aluminoborates containing [B ₅ O ₁₀] clusters. Dalton Transactions, 2015, 44, 1420-1426.	1.6	19
54	Bipyridine-triggered modulation of structure and properties of zinc-diphosphonates: coordination role <i>vs.</i> template rule. Dalton Transactions, 2018, 47, 1650-1656.	1.6	19

#	Article	IF	CITATIONS
55	A 3D Iodoplumbate Semiconducting Open Framework with Visibleâ€lightâ€induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 2086-2090.	1.7	19
56	Room-Temperature Phosphorescence with Variable Lifetime of Halogen-Comprising Coordination Polymers. Inorganic Chemistry, 2020, 59, 17870-17874.	1.9	19
57	Two hybrid lanthanide complexes exhibiting a large magnetocaloric effect and slow magnetic relaxation. Dalton Transactions, 2017, 46, 10023-10028.	1.6	18
58	Cluster-Based Anionic Template Assisted in the Formation of 3D Cobalt Cationic Framework: A Bridge Connecting MOFs and Halometallates?. Inorganic Chemistry, 2018, 57, 11318-11321.	1.9	18
59	White-Light Emission and Magnetism Behaviors Endowed by Inorganic Lanthanide Templates in Iodocuprates. Crystal Growth and Design, 2019, 19, 1825-1831.	1.4	18
60	Zinc-diphosphonates with extended dipyridine units: synthesis, structures, <i>in situ</i> reactions, and photochromism. Dalton Transactions, 2019, 48, 3955-3961.	1.6	18
61	Coordinate bond- and hydrogen bond-assisted electron transfer strategy towards the generation of photochromic metal phosphites. Dalton Transactions, 2020, 49, 14598-14604.	1.6	18
62	Two Cobalt-diphosphonates Templated by Long-Chain Flexible Amines: Synthesis, Structures, Proton Conductivity, and Magnetic Properties. Crystal Growth and Design, 2018, 18, 3477-3483.	1.4	17
63	The Iodoargentate Framework as a High-Performance "Sweeper―for Specific Dye Pollutant. Crystal Growth and Design, 2018, 18, 6421-6425.	1.4	17
64	Two- and three-dimensional hybrid zinc phosphites: syntheses, structures and photoluminescence properties. Dalton Transactions, 2018, 47, 12468-12473.	1.6	17
65	Pure Inorganic Iodocuprate Framework Embedding In Situ Generated [Pb ₄ (OH) ₄] ⁴⁺ Cubic Template. Inorganic Chemistry, 2019, 58, 1746-1749.	1.9	16
66	Single molecule magnetic behavior and photo-enhanced proton conductivity in a series of photochromic complexes. Chinese Chemical Letters, 2022, 33, 1417-1421.	4.8	16
67	Electron transfer photochromism of Ln-based (Ln = Dy, Tb) coordinated polymers for reversibly switching off/on single-molecule magnetic behavior. Science China Materials, 2022, 65, 788-794.	3.5	16
68	Switching the Zinc Diphosphonates from 1D Chain to 2D Layer and 3D Framework by the Modulation of a Flexible Organic Amine. Crystal Growth and Design, 2019, 19, 2919-2926.	1.4	15
69	Metal-dependent photochromic performance in two isostructural supramolecular chains. Dalton Transactions, 2021, 50, 546-552.	1.6	15
70	Hybrid Photochromic Lanthanide Phosphonate with Multiple Photoresponsive Functionalities. Inorganic Chemistry, 2022, 61, 8379-8385.	1.9	15
71	Ligand-oriented assembly of a porous metal–organic framework by [Cu ^I ₄ I ₄] clusters and paddle-wheel [Cu ^{II} ₂ (COO) ₄ (H ₂ O) ₂] subunits. CrystEngComm_2016_18_8362-8365	1.3	14
72	A Series of Iodoargentates Directed by Solvated Metal Cations Featuring Uptake and Photocatalytic Degradation of Organic Dye Pollutants. Chemistry - an Asian Journal, 2019, 14, 640-646.	1.7	12

#	Article	IF	CITATIONS
73	Optimizing the Proton Conductivity of Fe-Diphosphonates by Increasing the Relative Number of Protons and Carrier Densities. Inorganic Chemistry, 2020, 59, 11834-11840.	1.9	12
74	Triple responsive room temperature luminescence, photochromism and photomagnetism in a Dy(<scp>iii</scp>)-based linear chain complex. CrystEngComm, 2020, 22, 7538-7542.	1.3	12
75	A porous copper–organic framework with intersecting channels and gas adsorption properties. Dalton Transactions, 2017, 46, 13952-13956.	1.6	11
76	Penta-nuclear [Ag ₅ 1 ₆] Cluster-Based Photochromic Hybrid: Synthesis, Structure, Dye Sorption, and Separation. Crystal Growth and Design, 2021, 21, 1055-1061.	1.4	11
77	NaSb ₃ O ₂ (SO ₄) ₃ ·H ₂ O: A New Alkali-Metal Antimony(III) Sulfate with a Unique Sb ₆ O ₂₀ H ₄ Unit and Moderate Birefringence. Crystal Growth and Design, 2022, 22, 478-484.	1.4	11
78	Synthesis and structure of QD-6: A novel aluminoborate constructed from unprecedented [B@Al ₆ O ₂₄] and polyborate clusters. Dalton Transactions, 2012, 41, 734-736.	1.6	10
79	Layered Hybrid Zincophosphites for Room Temperature Phosphorescent Emission. Inorganic Chemistry, 2018, 57, 14497-14500.	1.9	10
80	Construction of the Lanthanide Diphosphonates via a Template-Synthesis Strategy: Structures, Proton Conduction, and Magnetic Behavior. Crystal Growth and Design, 2019, 19, 3045-3051.	1.4	10
81	Novel CoNi-metal–organic framework crystal-derived CoNi@C: synthesis and effective cascade catalysis. Dalton Transactions, 2020, 49, 10567-10573.	1.6	10
82	Decorating Metal Nitrate with a Coplanar Bipyridine Moiety: A Simple and General Method for Fabricating Photochromic Complexes. Chemistry - A European Journal, 2021, 27, 4709-4714.	1.7	10
83	Conjugated-Polypyridine-Derivative-Derived Semiconductive Iodoplumbates with Tunable Architectures and Efficient Visible-Light-Induced Photocatalytic Property. Inorganic Chemistry, 2021, 60, 2105-2111.	1.9	10
84	Synthesis, structure and properties of a new noncentrosymmetric aluminoborate. Inorganic Chemistry Communication, 2014, 40, 168-171.	1.8	9
85	Concise template syntheses of gallium phosphates driven by in situ direct alkylation of aliphatic and aromatic precursors by methanol. RSC Advances, 2015, 5, 74811-74820.	1.7	9
86	Proton coupled electron transfer mechanism for the design and construction of crystalline hybrid photochromic halometallates based on nonphotoactive polypyridine-derivative moieties. Dyes and Pigments, 2021, 184, 108784.	2.0	9
87	Novel silver(<scp>i</scp>) cluster-based coordination polymers as efficient luminescent thermometers. CrystEngComm, 2021, 23, 56-63.	1.3	9
88	Synthesis and structural characterization of five zinc bisphosphonate compounds. Solid State Sciences, 2017, 70, 47-53.	1.5	8
89	Hydrothermal Synthesis and Structural Characterization of a New Hybrid Zinc Borate, [Zn(dap)2][B4O6(OH)2]. Journal of Cluster Science, 2017, 28, 1453-1462.	1.7	7
90	Metal–organic complex-derived 3D porous carbon-supported g-C ₃ N ₄ /TiO ₂ as photocatalysts for the efficient degradation of antibiotic. CrystEngComm, 2021, 23, 4717-4723.	1.3	7

#	Article	IF	CITATIONS
91	Alkali-regulated Fe6 and Fe18 molecular clusters and their structural transformation. Inorganic Chemistry Frontiers, 2021, 8, 4186-4191.	3.0	7
92	In situ growth of polyoxometalate-based metal-organic framework nanoflower arrays for efficient hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107414.	4.8	7
93	Syntheses and Crystal Structures of Two New Pentaborates Templated by Transition-Metal Complexes. Journal of Cluster Science, 2014, 25, 1295-1305.	1.7	6
94	[Zn(dap)3][Zn(dap)B5O8(OH)2]2: A Novel Organic–Inorganic Hybrid Chain-Like Zincoborate Made of [B5O8(OH)2]3â^' Clusters and [Zn(dap)]2+ Linkers. Journal of Cluster Science, 2017, 28, 1421-1429.	1.7	6
95	Low-Dimensional Lead(II) Halides with In Situ Generated Tripyridine-Derivatives as Countercations: Synthesis, Structures and Properties. Journal of Cluster Science, 2017, 28, 2669-2679.	1.7	6
96	Achieving an electron transfer photochromic complex for switchable white-light emission. Chinese Chemical Letters, 2022, 33, 3203-3206.	4.8	6
97	Inserting protonated phenanthroline derivatives into the interchain voids of anionic halometallate units to generate hybrid materials with tunable photochromic performance. Dalton Transactions, 2022, 51, 4310-4316.	1.6	6
98	Synthesis and Characterization of [(C ₂ H ₈ NO) ₂ T ₅ (HPO ₃) ₆ (H <sub a New 2D Hybrid Zinc Phosphite with Neutral Framework. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 1149-1153.</sub)>2	O)ၚsub>2
99	Optical and photocatalytic properties of conjugated-organic-templates derived semiconducting iodocuprates hybrids. Optical Materials, 2020, 109, 110376.	1.7	5
100	Ultraviolet nonlinear optical crystal: (NH4)ZnPO4. Inorganic Chemistry Communication, 2020, 113, 107803.	1.8	5
101	Modulating Coordination Microenvironment of Metal Ions to Tune the Photochromic Performances of Three Hybrid Zincophosphites with Isotopological Architecture. Crystal Growth and Design, 2021, 21, 7008-7014.	1.4	5
102	Photoactive Anthracene-9,10-dicarboxylic Acid for Tuning of Photochromism in the Cd/Zn Coordination Polymers. Inorganic Chemistry, 2022, 61, 10792-10800.	1.9	5
103	The structures, photoluminescence and photocatalytic properties of two types of iodocuprate hybrids. Inorganic Chemistry Communication, 2018, 97, 119-124.	1.8	4
104	Template syntheses of cadmium/lead halides as luminescence thermometers. Inorganic Chemistry Communication, 2021, 131, 108765.	1.8	4
105	Modulating the structure and photochromic performance of hybrid metal chlorides with nonphotochromic 1,10-phenanthroline and its derivative. Dalton Transactions, 2021, 50, 18089-18096.	1.6	4
106	Poly[diaquapentakis(μ4-benzene-1,2-dicarboxylato)(μ3-benzene-1,2-dicarboxylato)tetrathulium(III)]. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m468-m469.	0.2	3
107	Poly[bis(μ4-benzene-1,2-dicarboxylato)di-μ3-isonicotinato-dilanthanum(III)]. Acta Crystallographica Section C: Crystal Structure Communications, 2009, 65, m469-m471.	0.4	3
108	Synthesis, Structural Characterization and Properties of Two Strontium Borates Constructed from Oxo Boron Clusters. Journal of Cluster Science, 2014, 25, 1319-1329.	1.7	3

#	Article	IF	CITATIONS
109	Hydrothermal Synthesis of New Organically Templated Beryllium Phosphite and Phosphate with 3,4â€connected Networks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 688-693.	0.6	3
110	Ligand-regulated unusual nickel clusters: A centrosymmetric dicubane Ni8 and a tetrahedral Ni10 cluster. Chinese Chemical Letters, 2023, 34, 107390.	4.8	3
111	Syntheses and Crystal Structures of Three Organically Templated Gallium Phosphates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1011-1015.	0.6	2
112	Template-directed syntheses of two 3D metal oxalates: in situ N-methylation and crystal structures. Journal of Coordination Chemistry, 2017, 70, 84-92.	0.8	2
113	Two bismuth(III) halides directed by in situ generated tripyridine-derivatives: Syntheses, structures and photocatalytic properties. Inorganic Chemistry Communication, 2019, 108, 107516.	1.8	2
114	Engineering hydrophobic carbon sponge from metalâ~'organic complexes@melamine foam composite for advanced volatile organic compounds adsorption. Journal of Materials Science, 2021, 56, 9093-9105.	1.7	2
115	Bis(ethylenediammonium) tetradecaborate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 0798-0799.	0.2	1
116	A 3D Cu(I)-organic framework constructed from discrete Cu 2 I 2 moiety and infinite [CuI] n chain. Inorganic Chemistry Communication, 2018, 92, 106-109.	1.8	1
117	Poly[tetraaqua-μ4-bromido-di-μ2-bromido-μ2-hydroxido-di-μ3-isonicotinato-tetra-μ2-isonicotinato-tetraco Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1260-m1261.	pper(I)dith	ulium(III)].

Poly[tetraaqua-μ3-benzene-1,2-dicarboxylato-μ3-bromido-penta-μ2-bromido-octa-μ3-isonicotinato-heptacopper(I)trilanthanum(III) Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m550-m551.