
Philippe Jay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7255628/publications.pdf Version: 2024-02-01

Ομιιίδος Ιλν

#	Article	IF	CITATIONS
1	Intestinal epithelial tuft cell induction is negated by a murine helminth and its secreted products. Journal of Experimental Medicine, 2022, 219, .	8.5	40
2	The IL-25-dependent tuft cell circuit driven by intestinal helminths requires macrophage migration inhibitory factor (MIF). Mucosal Immunology, 2022, 15, 1243-1256.	6.0	18
3	Progastrin production transitions from Bmi1+/Prox1+ to Lgr5high cells during early intestinal tumorigenesis. Translational Oncology, 2021, 14, 101001.	3.7	1
4	The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nature Communications, 2021, 12, 4810.	12.8	7
5	Tuft cells: sentinels of the intestinal mucosa. Comptes Rendus - Biologies, 2021, 344, 263-273.	0.2	0
6	Tuft Cells Increase Following Ovine Intestinal Parasite Infections and Define Evolutionarily Conserved and Divergent Responses. Frontiers in Immunology, 2021, 12, 781108.	4.8	9
7	Expression of POU2F3 Transcription Factor Control Inflammation, Immunological Recruitment and Metastasis of Pancreatic Cancer in Mice. Biology, 2020, 9, 341.	2.8	5
8	Loss of Apc Rapidly Impairs DNA Methylation Programs and Cell Fate Decisions in Lgr5+ Intestinal Stem Cells. Cancer Research, 2020, 80, 2101-2113.	0.9	13
9	A Semi-automated Organoid Screening Method Demonstrates Epigenetic Control of Intestinal Epithelial Differentiation. Frontiers in Cell and Developmental Biology, 2020, 8, 618552.	3.7	13
10	Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature, 2018, 559, 622-626.	27.8	235
11	Cell-Cycle Regulation Accounts for Variability in Ki-67 Expression Levels. Cancer Research, 2017, 77, 2722-2734.	0.9	263
12	The cell proliferation antigen Ki-67 organises heterochromatin. ELife, 2016, 5, e13722.	6.0	237
13	Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunology, 2016, 9, 1353-1359.	6.0	107
14	Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature, 2016, 529, 226-230.	27.8	706
15	The Cytosolic Bacterial Peptidoglycan Sensor Nod2 Affords Stem Cell Protection and Links Microbes to Gut Epithelial Regeneration. Cell Host and Microbe, 2014, 15, 792-798.	11.0	216
16	Random chromosome segregation in mouse intestinal epithelial stem cells. Chromosome Research, 2013, 21, 213-224.	2.2	0
17	Type 2 cGMP-dependent protein kinase regulates proliferation and differentiation in the colonic mucosa. American Journal of Physiology - Renal Physiology, 2012, 303, G209-G219.	3.4	39
18	An Integrated Chemical Biology Approach Provides Insight into Cdk2 Functional Redundancy and Inhibitor Sensitivity. Chemistry and Biology, 2012, 19, 1028-1040.	6.0	36

Philippe Jay

#	Article	IF	CITATIONS
19	The intestinal epithelium tuft cells: specification and function. Cellular and Molecular Life Sciences, 2012, 69, 2907-2917.	5.4	214
20	Hierarchy and plasticity in the crypt: back to the drawing board. Cell Research, 2011, 21, 1652-1654.	12.0	3
21	Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the interintestinal epithelium. Journal of Cell Biology, 2011, 192, 767-780.	5.2	337
22	Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation. Nature Communications, 2011, 2, 258.	12.8	59
23	"The Immortal DNA Strand― Difficult to Digest?. Cell Stem Cell, 2010, 6, 298-299.	11.1	5
24	A 20-Amino Acid Module of Protein Kinase CΪμ Involved in Translocation and Selective Targeting at Cell-Cell Contacts. Journal of Biological Chemistry, 2009, 284, 18808-18815.	3.4	7
25	A new mechanism of SOX9 action to regulate PKCα expression in the intestine epithelium. Journal of Cell Science, 2009, 122, 2191-2196.	2.0	19
26	DCAMKL-1 Expression Identifies Tuft Cells Rather Than Stem Cells in the Adult Mouse Intestinal Epithelium. Gastroenterology, 2009, 137, 2179-2180.	1.3	150
27	CEACAM1, a SOX9 direct transcriptional target identified in the colon epithelium. Oncogene, 2008, 27, 7131-7138.	5.9	37
28	Maturation of Paneth Cells Induces the Refractory State of Newborn Mice to <i>Shigella</i> Infection. Journal of Immunology, 2008, 180, 4924-4930.	0.8	47
29	Defective Claudin-7 Regulation by Tcf-4 and Sox-9 Disrupts the Polarity and Increases the Tumorigenicity of Colorectal Cancer Cells. Cancer Research, 2008, 68, 4258-4268.	0.9	108
30	Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. Journal of Cell Biology, 2007, 178, 635-648.	5.2	412
31	β-Catenin/Tcf-4 Inhibition After Progastrin Targeting Reduces Growth and Drives Differentiation of Intestinal Tumors. Gastroenterology, 2007, 133, 1554-1568.	1.3	41
32	Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nature Cell Biology, 2005, 7, 381-386.	10.3	555
33	Expression of the Carcinoembryonic Antigen Gene Is Inhibited by SOX9 in Human Colon Carcinoma Cells. Cancer Research, 2005, 65, 2193-2198.	0.9	56
34	SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. Journal of Cell Biology, 2004, 166, 37-47.	5.2	422
35	SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling. Nucleic Acids Research, 2001, 29, 4274-4283.	14.5	142
36	Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 2001, 31, 285-293.	2.9	5

Philippe Jay

#	Article	IF	CITATIONS
37	ARP3β, the gene encoding a new human actin-related protein, is alternatively spliced and predominantly expressed in brain neuronal cells. FEBS Journal, 2000, 267, 2921-2928.	0.2	29
38	Diversification Pattern of the HMG and SOX Family Members During Evolution. Journal of Molecular Evolution, 1999, 48, 517-527.	1.8	98
39	Characterization of two Sp1 binding sites of the human sex determining SRY promoter. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 247-252.	2.4	26
40	Mutation in the 5′ noncoding region of the SRY gene in an XY sex-reversed patient. Human Mutation, 1998, 11, S192-S194.	2.5	22
41	Further complexity of the humanSOXgene family revealed by the combined use of highly degenerate primers and nested PCR. FEBS Letters, 1998, 438, 311-314.	2.8	22
42	Phosphorylation of an N-terminal Motif Enhances DNA-binding Activity of the Human SRY Protein. Journal of Biological Chemistry, 1998, 273, 7988-7995.	3.4	68
43	SOX22 is a new member of the SOX gene family, mainly expressed in human nervous tissue. Human Molecular Genetics, 1997, 6, 1069-1077.	2.9	43
44	lsolation and Regional Mapping of cDNAs Expressed during Early Human Development. Genomics, 1997, 39, 104-108.	2.9	15
45	The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene, 1997, 14, 1753-1757.	5.9	64
46	The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nature Genetics, 1997, 17, 357-361.	21.4	241
47	Specific Inhibition of Stat3 Signal Transduction by PIAS3. Science, 1997, 278, 1803-1805.	12.6	883
48	Cloning of the Human Homologue of the TGFβ-Stimulated Clone 22 Gene. Biochemical and Biophysical Research Communications, 1996, 222, 821-826.	2.1	39
49	PC8 [corrected], a new member of the convertase family. Biochemical Journal, 1996, 314, 727-731.	3.7	94
50	Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genetics, 1996, 14, 357-360.	21.4	1,075
51	Characterization of the human jumonji gene. Human Molecular Genetics, 1996, 5, 1637-1641.	2.9	32
52	The Human SOX11 Gene: Cloning, Chromosomal Assignment and Tissue Expression. Genomics, 1995, 29, 541-545.	2.9	80