List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7255460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nature Biotechnology, 2008, 26, 1161-1168.	17.5	427
2	Phosphate Control of the Biosynthesis of Antibiotics and Other Secondary Metabolites Is Mediated by the PhoR-PhoP System: an Unfinished Story. Journal of Bacteriology, 2004, 186, 5197-5201.	2.2	197
3	The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 10.	2.8	171
4	Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Current Opinion in Microbiology, 2005, 8, 282-293.	5.1	163
5	Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Molecular Microbiology, 2005, 56, 1373-1385.	2.5	135
6	Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-aid-acyltransferase gene of Penicillium chrysogenum. Gene, 1989, 83, 291-300.	2.2	130
7	Genomeâ€wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in <i>Streptomyces coelicolor</i> M145 and in a î" <i>phoP</i> mutant. Proteomics, 2007, 7, 2410-2429.	2.2	121
8	Crossâ€ŧalk between two global regulators in <i>Streptomyces</i> : PhoP and AfsR interact in the control of <i>afsS</i> , <i>pstS</i> and <i>phoRP</i> transcription. Molecular Microbiology, 2009, 72, 53-68.	2.5	118
9	The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metabolic Engineering, 2007, 9, 217-227.	7.0	107
10	Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Research, 2009, 37, 3230-3242.	14.5	104
11	Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology (United Kingdom), 2007, 153, 3527-3537.	1.8	97
12	A Single Cluster of Coregulated Genes Encodes the Biosynthesis of the Mycotoxins Roquefortine C and Meleagrin in Penicillium chrysogenum. Chemistry and Biology, 2011, 18, 1499-1512.	6.0	95
13	Identification of PimR as a Positive Regulator of Pimaricin Biosynthesis in Streptomyces natalensis. Journal of Bacteriology, 2004, 186, 2567-2575.	2.2	94
14	The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genetics and Biology, 2006, 43, 261-272.	2.1	92
15	PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology (United Kingdom), 2007, 153, 3174-3183.	1.8	90
16	PI Factor, a Novel Type Quorum-sensing Inducer Elicits Pimaricin Production in Streptomyces natalensis. Journal of Biological Chemistry, 2004, 279, 41586-41593.	3.4	89
17	Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein?. Microbial Cell Factories, 2008, 7, 3.	4.0	82
18	Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Research, 2008, 36, 1358-1368.	14.5	82

#	Article	IF	CITATIONS
19	Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome 1 (10.4 Mb) in Penicillium chrysogenum. Molecular Genetics and Genomics, 1993, 241-241, 573-578.	2.4	80
20	The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. FEBS Journal, 1993, 215, 323-332.	0.2	80
21	Crossâ€ŧalk of global nutritional regulators in the control of primary and secondary metabolism in <i>Streptomyces</i> . Microbial Biotechnology, 2011, 4, 165-174.	4.2	80
22	Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microbial Cell Factories, 2015, 14, 178.	4.0	80
23	Regulation and compartmentalization of βâ€lactam biosynthesis. Microbial Biotechnology, 2010, 3, 285-299.	4.2	77
24	Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochemical Journal, 2006, 395, 147-155.	3.7	76
25	Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology (United Kingdom), 2008, 154, 2356-2370.	1.8	74
26	RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: Validation studies using β-lactam genes expression. Journal of Microbiological Methods, 2008, 75, 209-218.	1.6	73
27	Competition between the ClnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor. Nucleic Acids Research, 2013, 41, 1767-1782.	14.5	73
28	Arginine boxes and theargRgene inStreptomyces clavuligerus: evidence for a clear regulation of the arginine pathway. Molecular Microbiology, 1997, 25, 219-228.	2.5	72
29	A Novel Epimerization System in Fungal Secondary Metabolism Involved in the Conversion of Isopenicillin N into Penicillin N inAcremonium chrysogenum. Journal of Biological Chemistry, 2002, 277, 46216-46225.	3.4	71
30	The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. Journal of Antibiotics, 2017, 70, 534-541.	2.0	67
31	Autonomously replicating plasmids carrying theAMA1 region inPenicillium chrysogenum. Current Genetics, 1996, 29, 482-489.	1.7	65
32	Production of Penicillin by Fungi Growing on Food Products: Identification of a Complete Penicillin Gene Cluster in Penicillium griseofulvum and a Truncated Cluster in Penicillium verrucosum. Applied and Environmental Microbiology, 2002, 68, 1211-1219.	3.1	64
33	Phosphate control sequences involved in transcriptional regulation of antibiotic biosynthesis. Trends in Biotechnology, 1990, 8, 184-189.	9.3	63
34	Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Molecular Genetics and Genomics, 1991, 225, 56-64.	2.4	63
35	Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek, 1999, 75, 21-31.	1.7	63
36	.ALPHAAminoadipyl-cysteinyl-valine Synthetases in .BETALactam Producing Organisms Journal of Antibiotics, 2000, 53, 1008-1021.	2.0	62

#	Article	IF	CITATIONS
37	Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes–Tresviso local varieties of blue-veined cheeses. International Journal of Food Microbiology, 2009, 136, 18-25.	4.7	62
38	Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek, 1999, 75, 81-94.	1.7	61
39	Functional conservation of PAS–LuxR transcriptional regulators in polyene macrolide biosynthesis. Metabolic Engineering, 2011, 13, 756-767.	7.0	58
40	Molecular Mechanisms of Chromosomal Rearrangement in Fungi. Critical Reviews in Microbiology, 1999, 25, 1-17.	6.1	57
41	Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in <i>Penicillium chrysogenum</i> : cross-talk regulation of secondary metabolite pathways. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 525-535.	3.0	55
42	Organization of the Gene Cluster for Biosynthesis of Penicillin in Penicillium nalgiovense and Antibiotic Production in Cured Dry Sausages. Applied and Environmental Microbiology, 1999, 65, 1236-1240.	3.1	54
43	Transcriptional regulation of the desferrioxamine gene cluster ofStreptomyces coelicoloris mediated by binding of DmdR1 to an iron box in the promoter of thedesAgene. FEBS Journal, 2007, 274, 1110-1122.	4.7	54
44	Metabolic Switches and Adaptations Deduced from the Proteomes of Streptomyces coelicolor Wild Type and phoP Mutant Grown in Batch Culture. Molecular and Cellular Proteomics, 2012, 11, M111.013797.	3.8	54
45	Biochemical characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis Journal of Biological Chemistry, 1993, 268, 737-744.	3.4	54
46	Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate?. International Microbiology, 2006, 9, 9-19.	2.4	54
47	The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochemical Journal, 2009, 418, 113-124.	3.7	53
48	Molecular Control of Polyene Macrolide Biosynthesis. Journal of Biological Chemistry, 2011, 286, 9150-9161.	3.4	53
49	Efficient Transformation of the Cephamycin C Producer <i>Nocardia lactamdurans</i> and Development of Shuttle and Promoter-Probe Cloning Vectors. Applied and Environmental Microbiology, 1994, 60, 4086-4093.	3.1	52
50	CcaR Is an Autoregulatory Protein That Binds to the ccaR and cefD-cmcl Promoters of the Cephamycin C-Clavulanic Acid Cluster in Streptomyces clavuligerus. Journal of Bacteriology, 2002, 184, 3106-3113.	2.2	51
51	Silencing of the Aspergillopepsin B (pepB) Gene of Aspergillus awamori by Antisense RNA Expression or Protease Removal by Gene Disruption Results in a Large Increase in Thaumatin Production. Applied and Environmental Microbiology, 2002, 68, 3550-3559.	3.1	49
52	Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C: negative regulation of secondary metabolism by (p)ppGpp. Microbiology (United Kingdom), 2008, 154, 744-755.	1.8	49
53	Proteomics Shows New Faces for the Old Penicillin Producer <i>Penicillium chrysogenum</i> . Journal of Biomedicine and Biotechnology, 2012, 2012, 1-15.	3.0	47
54	Characterization and expression in Streptomyces lividans of cefD and cefE genes from Nocardia lactamdurans: the organization of the cephamycin gene cluster differs from that in Streptomyces clavuligerus. Molecular Genetics and Genomics, 1993, 236-236, 453-458.	2.4	46

#	Article	IF	CITATIONS
55	A Squalene Epoxidase Is Involved in Biosynthesis of Both the Antitumor Compound Clavaric Acid and Sterols in the Basidiomycete H. sublateritium. Chemistry and Biology, 2007, 14, 1334-1346.	6.0	46
56	Two overlapping antiparallel genes encoding the iron regulator DmdR1 and the Adm proteins control sidephore and antibiotic biosynthesis in <i>Streptomyces coelicolor</i> A3(2). FEBS Journal, 2009, 276, 4814-4827.	4.7	46
57	Draft Genome of Streptomyces tsukubaensis NRRL 18488, the Producer of the Clinically Important Immunosuppressant Tacrolimus (FK506). Journal of Bacteriology, 2012, 194, 3756-3757.	2.2	46
58	Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochemical Journal, 2004, 380, 497-503.	3.7	45
59	FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiology, 2012, 12, 238.	3.3	45
60	Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2012, 95, 61-75.	3.6	45
61	Deacetylcephalosporin C Production in Penicillium chrysogenum by Expression of the Isopenicillin N Epimerization, Ring Expansion, and Acetylation Genes. Chemistry and Biology, 2007, 14, 329-339.	6.0	43
62	Transcriptomic Analysis of Streptomyces coelicolor Differentiation in Solid Sporulating Cultures: First Compartmentalized and Second Multinucleated Mycelia Have Different and Distinctive Transcriptomes. PLoS ONE, 2013, 8, e60665.	2.5	42
63	Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochemical Journal, 2008, 415, 317-324.	3.7	41
64	Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor. Microbiology (United Kingdom), 2009, 155, 1800-1811.	1.8	41
65	Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: Biosynthesis of the antitumor clavaric acid. Fungal Genetics and Biology, 2009, 46, 232-242.	2.1	41
66	The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Applied Microbiology and Biotechnology, 2014, 98, 4919-4936.	3.6	40
67	Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochemical Journal, 2010, 432, 227-236.	3.7	39
68	ArgR of Streptomyces coelicolor Is a Versatile Regulator. PLoS ONE, 2012, 7, e32697.	2.5	39
69	Different proteins bind to the butyrolactone receptor protein ARE sequence located upstream of the regulatoryccaRgene ofStreptomyces clavuligerus. Molecular Microbiology, 2005, 56, 824-835.	2.5	38
70	Connecting primary and secondary metabolism: AreB, an IclRâ€like protein, binds the ARE ccaR sequence of S.â€∫clavuligerus and modulates leucine biosynthesis and cephamycin C and clavulanic acid production. Molecular Microbiology, 2007, 66, 511-524.	2.5	38
71	chapter 10 Enzymology of the Polyenes Pimaricin and Candicidin Biosynthesis. Methods in Enzymology, 2009, 459, 215-242.	1.0	38
72	The RNA Polymerase Omega Factor RpoZ Is Regulated by PhoP and Has an Important Role in Antibiotic Biosynthesis and Morphological Differentiation in Streptomyces coelicolor. Applied and Environmental Microbiology, 2011, 77, 7586-7594.	3.1	38

#	Article	IF	CITATIONS
73	Characterization and nitrogen-source regulation at the transcriptional level of the gdh A gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Current Genetics, 1998, 34, 50-59.	1.7	37
74	Cascades and Networks of Regulatory Genes That Control Antibiotic Biosynthesis. Sub-Cellular Biochemistry, 2012, 64, 115-138.	2.4	37
75	Δ-1-Piperideine-6-carboxylate dehydrogenase, a new enzyme that forms <i>α</i> -aminoadipate in <i>Streptomyces clavuligerus</i> and other cephamycin C-producing actinomycetes. Biochemical Journal, 1997, 327, 59-64.	3.7	36
76	Unraveling the methionine–cephalosporin puzzle in Acremonium chrysogenum. Trends in Biotechnology, 2002, 20, 502-507.	9.3	35
77	Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnology Advances, 2019, 37, 107392.	11.7	34
78	The Balance Metabolism Safety Net: Integration of Stress Signals by Interacting Transcriptional Factors in Streptomyces and Related Actinobacteria. Frontiers in Microbiology, 2019, 10, 3120.	3.5	34
79	Phosphate control of pabS gene transcription during candicidin biosynthesis. Gene, 1990, 93, 79-84.	2.2	33
80	Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology (United Kingdom), 2006, 152, 11-21.	1.8	33
81	PimT, an amino acid exporter controls polyene production via secretion of the quorum sensing pimaricin-inducer PI-factor in Streptomyces natalensis. Microbial Cell Factories, 2009, 8, 33.	4.0	33
82	LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor. PLoS ONE, 2012, 7, e31475.	2.5	33
83	Is PhoR–PhoP partner fidelity strict? PhoR is required for the activation of the pho regulon in Streptomyces coelicolor. Molecular Genetics and Genomics, 2012, 287, 565-573.	2.1	33
84	The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. Research in Microbiology, 2007, 158, 437-446.	2.1	32
85	Structure and organization of the rrnD operon of â€~Brevibacterium lactofermentum': analysis of the 16S rRNA gene. Microbiology (United Kingdom), 1999, 145, 915-924.	1.8	31
86	Complex Transcriptional Control of the Antibiotic Regulator <i>afsS</i> in Streptomyces: PhoP and AfsR Are Overlapping, Competitive Activators. Journal of Bacteriology, 2011, 193, 2242-2251.	2.2	31
87	The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum. Applied Microbiology and Biotechnology, 2013, 97, 3073-3084.	3.6	31
88	Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biology and Biotechnology, 2020, 7, 6.	5.1	30
89	A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Applied Microbiology and Biotechnology, 2013, 97, 795-808.	3.6	29
90	Overlapping binding of PhoP and AfsR to the promoter region of glnR in Streptomyces coelicolor. Microbiological Research, 2012, 167, 532-535.	5.3	28

#	Article	IF	CITATIONS
91	New insights into the isopenicillin N transport in Penicillium chrysogenum. Metabolic Engineering, 2014, 22, 89-103.	7.0	28
92	Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS Journal, 2005, 272, 725-735.	4.7	27
93	Transcriptional response to vancomycin in a highly vancomycin-resistant <i>Streptomyces coelicolor</i> mutant. Future Microbiology, 2014, 9, 603-622.	2.0	27
94	Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochemical Journal, 1999, 337, 379-385.	3.7	26
95	Conversion of Pipecolic Acid into Lysine in Penicillium chrysogenum Requires Pipecolate Oxidase and Saccharopine Reductase: Characterization of the lys7 Gene Encoding Saccharopine Reductase. Journal of Bacteriology, 2001, 183, 7165-7172.	2.2	26
96	Vancomycin resistance in Streptomyces coelicolor is phosphate-dependent but is not mediated by the PhoP regulator. Journal of Global Antimicrobial Resistance, 2013, 1, 109-113.	2.2	26
97	Overexpression of the Nocardia lactamduransalpha-Aminoadipyl-Cysteinyl-Valine Synthetase in Streptomyces lividans. The Purified Multienzyme Uses Cystathionine and 6-Oxopiperidine 2-Carboxylate as Substrates for Synthesis of the Tripeptide. FEBS Journal, 1996, 242, 264-270.	0.2	23
98	Pulsed-Field Gel Electrophoresis Analysis of the Genome of Rhodococcus fascians : Genome Size and Linear and Circular Replicon Composition in Virulent and Avirulent Strains. Current Microbiology, 1998, 36, 302-308.	2.2	22
99	Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic l²-lactam transporter. Current Genetics, 2008, 54, 153-161.	1.7	22
100	CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metabolic Engineering, 2011, 13, 532-543.	7.0	22
101	Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Applied Microbiology and Biotechnology, 2016, 100, 1579-1587.	3.6	22
102	Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes, 2020, 11, 712.	2.4	22
103	Transcriptional analysis and proteomics of the holomycin gene cluster in overproducer mutants of Streptomyces clavuligerus. Journal of Biotechnology, 2013, 163, 69-76.	3.8	21
104	Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. Applied Microbiology and Biotechnology, 2016, 100, 8091-8103.	3.6	21
105	Transcriptional analysis of the sigA and sigB genes of Brevibacterium lactofermentum. FEMS Microbiology Letters, 2006, 153, 111-117.	1.8	20
106	Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiology, 2008, 8, 225.	3.3	20
107	Microarray studies reveal a â€~differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology (United Kingdom), 2009, 155, 359-372.	1.8	19
108	Streptomyces tacrolimicus sp. nov., a low producer of the immunosuppressant tacrolimus (FK506). International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1084-1088.	1.7	19

#	Article	IF	CITATIONS
109	Novel Genes Involved in Cephalosporin Biosynthesis: The Three-component Isopenicillin N Epimerase System. Advances in Biochemical Engineering/Biotechnology, 2004, 88, 91-109.	1.1	18
110	Analysis of the Pho regulon in Streptomyces tsukubaensis. Microbiological Research, 2017, 205, 80-87.	5.3	18
111	Unraveling Nutritional Regulation of Tacrolimus Biosynthesis in Streptomyces tsukubaensis through omic Approaches. Antibiotics, 2018, 7, 39.	3.7	18
112	The enigmatic lack of glucose utilization in Streptomyces clavuligerus is due to inefficient expression of the glucose permease gene. Microbiology (United Kingdom), 2010, 156, 1527-1537.	1.8	17
113	A rhodaneseâ€like protein is highly overrepresented in the mutant <i>S. clavuligerus oppA2::aph</i> : effect on holomycin and other secondary metabolites production. Microbial Biotechnology, 2011, 4, 216-225.	4.2	17
114	Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. Applied Microbiology and Biotechnology, 2017, 101, 8181-8195.	3.6	17
115	Expression of the endogenous and heterologous clavulanic acid cluster in Streptomyces flavogriseus: why a silent cluster is sleeping. Applied Microbiology and Biotechnology, 2013, 97, 9451-9463.	3.6	16
116	Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics, 2019, 8, 87.	3.7	16
117	New type of hexameric ornithine carbamoyltransferase with arginase activity in the cephamycin producers <i>Streptomyces clavuligerus</i> and <i>Nocardia lactamdurans</i> . Biochemical Journal, 1996, 320, 173-179.	3.7	13
118	Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster. Applied Microbiology and Biotechnology, 2017, 101, 6111-6121.	3.6	13
119	Isolation of Penicillium nalgiovense strains impaired in penicillin production by disruption of the pcbAB gene and application as starters on cured meat products. Mycological Research, 2003, 107, 717-726.	2.5	12
120	Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microbial Cell Factories, 2014, 13, 117.	4.0	12
121	Clavine Alkaloids Gene Clusters of Penicillium and Related Fungi: Evolutionary Combination of Prenyltransferases, Monooxygenases and Dioxygenases. Genes, 2017, 8, 342.	2.4	12
122	Biochemical characterization of the SecA protein of Streptomyces lividans . Interaction with nucleotides, binding to membrane vesicles and in vitro translocation of proAmy protein. FEBS Journal, 1998, 257, 472-478.	0.2	11
123	Harnessing microbiota interactions to produce bioactive metabolites: communication signals and receptor proteins. Current Opinion in Pharmacology, 2019, 48, 8-16.	3.5	11
124	Analysis of the codon usage of the cephamycin C producerNocardia lactamdurans. FEMS Microbiology Letters, 1993, 110, 91-95.	1.8	10
125	An inducible expression system of histidine-tagged proteins inStreptomyces lividansfor one-step purification by Ni2+affinity chromatography. FEMS Microbiology Letters, 1996, 137, 135-140.	1.8	10
126	Characterisation of a Î ³ -butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. Applied Microbiology and Biotechnology, 2011, 92, 971-984.	3.6	10

#	Article	IF	CITATIONS
127	Identification of different promoters in the absA1–absA2 two-component system, a negative regulator of antibiotic production in Streptomyces coelicolor. Molecular Genetics and Genomics, 2013, 288, 39-48.	2.1	10
128	Transcriptional control of the <scp><i>F</i></scp> ₀ <scp>F</scp> ₁ â€ <scp>ATP</scp> synthase operon of <i><scp>C</scp>orynebacterium glutamicum</i> : <scp>SigmaH</scp> factor binds to its promoter and regulates its expression at different <scp>pH</scp> values. Microbial Biotechnology, 2013, 6, 178-188.	4.2	10
129	Glycopeptide resistance: Links with inorganic phosphate metabolism and cell envelope stress. Biochemical Pharmacology, 2017, 133, 74-85.	4.4	10
130	Insight into the Genome of Diverse Penicillium chrysogenum Strains: Specific Genes, Cluster Duplications and DNA Fragment Translocations. International Journal of Molecular Sciences, 2020, 21, 3936.	4.1	10
131	Role of homoserine and threonine pathway intermediates as precursors for the biosynthesis of aminoethoxyvinylglycine in Streptomyces sp. NRRL 5331. Microbiology (United Kingdom), 2004, 150, 1467-1474.	1.8	9
132	Modulation of Gene Expression in Actinobacteria by Translational Modification of Transcriptional Factors and Secondary Metabolite Biosynthetic Enzymes. Frontiers in Microbiology, 2021, 12, 630694.	3.5	9
133	Analysis and validation of the pho regulon in the tacrolimus-producer strain Streptomyces tsukubaensis: differences with the model organism Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2018, 102, 7029-7045.	3.6	8
134	Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics, 2022, 11, 82.	3.7	8
135	β-Lactam Antibiotics. , 2009, , 274-289.		7
136	Efficient pyramidal arrangement of an ordered cosmid library: Rapid screening of genes of the tacrolimus-producer Streptomyces sp. ATCC 55098. Journal of Microbiological Methods, 2009, 78, 150-154.	1.6	7
137	Secondary Metabolites in Cheese Fungi. , 2017, , 293-315.		7
138	The specific transport system for lysine is fully inhibited by ammonium in Penicillium chrysogenum: an ammonium-insensitive system allows uptake in carbon-starved cells. Antonie Van Leeuwenhoek, 2000, 77, 91-100.	1.7	6
139	<i>Streptomyces clavuligerus:</i> The Omics Era. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	6
140	The PenV vacuolar membrane protein that controls penicillin biosynthesis is a putative member of a subfamily of stress-gated transient receptor calcium channels. Current Research in Biotechnology, 2021, 3, 317-322.	3.7	6
141	Biological control of mites by xerophile <i>Eurotium</i> species isolated from the surface of dry cured ham and dry beef cecina. Journal of Applied Microbiology, 2021, 130, 665-676.	3.1	5
142	The bleomycin resistance gene of transposon Tn5 is an excellent marker for transformation of corynebacteria. Applied Microbiology and Biotechnology, 1992, 36, 759-62.	3.6	4
143	Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Microbiological Research, 2018, 217, 14-22.	5.3	4
144	Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Current Genetics, 1996, 29, 482-489.	1.7	4

#	Article	IF	CITATIONS
145	Glycopeptides and Bacterial Cell Walls. , 2014, , 285-311.		3
146	Insights into the Structure and Molecular Mechanisms of \hat{l}^2 -Lactam Synthesizing Enzymes in Fungi. , 2017, , 215-241.		3
147	Novel Antimicrobial and other Bioactive Metabolites Obtained from Silent Gene Clusters. , 2015, , 275-292.		3
148	Cloning of amylase and alkaline phosphatase genes from <i>Streptomyces griseus</i> as secretion vectors. Biochemical Society Transactions, 1989, 17, 342-344.	3.4	2
149	Secondary Metabolites in Cheese Fungi. , 2016, , 1-23.		1
150	Purification and Chemical Characterization of a Potent Acaricide and a Closely Related Inactive Metabolite Produced by Eurotium rubrum C47. Antibiotics, 2020, 9, 881.	3.7	0