Ying Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/725510/publications.pdf Version: 2024-02-01

VINCLE

#	Article	IF	CITATIONS
1	S, N co-doped carbon nanotubes coupled with CoFe nanoparticles as an efficient bifunctional ORR/OER electrocatalyst for rechargeable Zn-air batteries. Chemical Engineering Journal, 2022, 429, 132174.	12.7	60
2	Enhanced bifunctional catalytic performance of nitrogen-doped carbon composite to oxygen reduction and evolution reactions with the regulation of graphene for rechargeable Znâ€air batteries. Applied Surface Science, 2022, 575, 151730.	6.1	13
3	Positive regulation of active sites for oxygen evolution reactions by encapsulating NiFe ₂ O ₄ nanoparticles in N-doped carbon nanotubes <i>in situ</i> to construct efficient bifunctional oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A. 2022, 10, 5305-5316.	10.3	16
4	Double-Activator Modulation of Ultrahigh Surface Areas on Doped Carbon Catalysts Boosts the Primary Zn–Air Battery Performance. ACS Applied Energy Materials, 2022, 5, 1701-1709.	5.1	12
5	Electronic structure tuning of FeCo nanoparticles embedded in multi-dimensional carbon matrix for enhanced bifunctional oxygen electrocatalysis. Journal of Alloys and Compounds, 2021, 853, 157070.	5.5	33
6	Active-N-Dominated Carbon Frameworks Supported CoNC Integrated with Co Nanoparticles as an Enhanced Bifunctional Oxygen Catalyst. Nano, 2021, 16, 2150038.	1.0	2
7	Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5Âyears: recent strategies for design, synthesis and performance optimization. Nanoscale Research Letters, 2021, 16, 92.	5.7	21
8	Hierarchical cobalt-nitrogen-doped carbon composite as efficiently bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Journal of Alloys and Compounds, 2021, 878, 160349.	5.5	15
9	A multifunctional activation strategy of ultrathin carbon layers-intertwined carbon microspheres clusters towards markedly enhanced capacitance. Journal of Porous Materials, 2021, 28, 567-578.	2.6	8
10	Boosting oxygen reduction catalysis with tailorable active-N-dominated doped defective CNTs. Applied Surface Science, 2020, 499, 143844.	6.1	12
11	Biomass <i>in situ</i> conversion to Fe single atomic sites coupled with Fe ₂ O ₃ clusters embedded in porous carbons for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 20629-20636.	10.3	54
12	Buckwheat derived nitrogen-rich porous carbon material with a high-performance Na-storage. Journal of Porous Materials, 2020, 27, 1139-1147.	2.6	12
13	Structural characterization, DFT studied, luminescent properties of cationic/neutral threeâ€coordinated copper (I) complexes and application in warmâ€white lightâ€emitting diode. Applied Organometallic Chemistry, 2020, 34, e5691.	3.5	6
14	Nitrogen source-mediated cocoon silk-derived N, O-doped porous carbons for high performance symmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 10825-10835.	2.2	19
15	Fe/Fe ₃ C encapsulated in nitrogen source-mediated active-N-rich defective carbon nanotubes for bifunctional oxygen catalysis. New Journal of Chemistry, 2020, 44, 10729-10738.	2.8	12
16	Effect of the valence state of initial iron source on oxygen evolution activity of Fe-doped Ni-MOF. Chemical Papers, 2020, 74, 2775-2784.	2.2	16
17	Constructing flexible and self-standing electrocatalyst for oxygen reduction reaction by in situ doping nitrogen atoms into carbon cloth. Applied Surface Science, 2020, 523, 146424.	6.1	7
18	Nanochannel-Controlled Synthesis of Ultrahigh Nitrogen-Doping Efficiency on Mesoporous Fe/N/C Catalysts for Oxygen Reduction Reaction. Nanoscale Research Letters, 2020, 15, 21.	5.7	9

Ying Lei

#	Article	IF	CITATIONS
19	AÂHighly Nanoporous Nitrogen-Doped Carbon Microfiber Derived from Bioresource as a New Kind of ORR Electrocatalyst. Nanoscale Research Letters, 2019, 14, 22.	5.7	17
20	Effect of activating agents on the structure and capacitance performance of tofu derived porous carbon. Journal of Materials Science: Materials in Electronics, 2019, 30, 10274-10283.	2.2	10
21	An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction. Materials, 2018, 11, 1912.	2.9	14
22	Boosting the oxygen reduction activity of a three-dimensional network Co–N–C electrocatalyst <i>via</i> space-confined control of nitrogen-doping efficiency and the molecular-level coordination effect. Journal of Materials Chemistry A, 2018, 6, 13050-13061.	10.3	74
23	Heavily nitrogen-doped acetylene black as a high-performance catalyst for oxygen reduction reaction. Carbon, 2017, 117, 12-19.	10.3	29
24	Improving the catalytic performance of nickel-iron oxide to oxygen evolution reaction by refining its particles with the assistance of ionic liquid. Ionics, 2017, 23, 789-794.	2.4	6
25	Fabrication of a nitrogen-doping carbon-based catalyst towards oxygen reduction reaction using ammonia as a single nitrogen source. Journal of the Ceramic Society of Japan, 2017, 125, 32-35.	1.1	1
26	Comparative Investigation of Simulated Solar-driven Photocatalytic Performance of g-C3N4 Prepared by Different Precursors. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	0
27	Improved solar-driven photocatalytic performance of Ag3PO4/ZnO composites benefiting from enhanced charge separation with a typical Z-scheme mechanism. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	18
28	Study on the Relationship Between Catalytic Activity and C-N Structures of a Nitrogen-contained Non-precious Metal Catalyst for Oxygen Reduction Reaction. Electrochemistry, 2015, 83, 595-599.	1.4	3
29	The synthesis and characterization of a Co-N/C composite catalyst for the oxygen reduction reaction in acidic solution. Science Bulletin, 2011, 56, 1086-1091.	1.7	9