Aliyeh Ghamkhari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7254564/publications.pdf

Version: 2024-02-01

15	338	840776 11	1058476
papers	citations	h-index	g-index
15	15	15	473
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel thermo-responsive system based on \hat{l}^2 -cyclodextrin-nanocomposite for improving the docetaxel activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 830-840.	3.4	5
2	Development of a graphene oxide-poly lactide nanocomposite as a Smart Drug Delivery System. International Journal of Biological Macromolecules, 2021, 169, 521-531.	7.5	42
3	Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polymer Bulletin, 2021, 78, 4877-4898.	3.3	18
4	Synthesis and characterization of poly(styrene-block-acrylic acid) diblock copolymer modified magnetite nanocomposite for efficient removal of penicillin G. Composites Part B: Engineering, 2020, 182, 107643.	12.0	28
5	Polystyrene Magnetic Nanocomposites as Antibiotic Adsorbents. Polymers, 2020, 12, 1313.	4.5	32
6	Chrysin and Docetaxel Loaded Biodegradable Micelle for Combination Chemotherapy of Cancer Stem Cell. Pharmaceutical Research, 2019, 36, 165.	3.5	22
7	pH-responsive magnetic nanocomposites based on poly(2-succinyloxyethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 2 Polymer Research, 2018, 25, 1.	10 Tf 50 50 2.4	607 Td (m <mark>et</mark> 8
8	Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1265-1286.	3.5	27
9	Dual stimuli-responsive poly(succinyloxyethylmethacrylate- $\langle i \rangle b \langle i \rangle - \langle i \rangle N \langle i \rangle$ -isopropylacrylamide) block copolymers as nanocarriers and respective application in doxorubicin delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 101-109.	3.4	19
10	An <i>in vitro</i> focus on doxorubicin hydrochloride delivery of novel pHâ€responsive poly(2â€succinyloxyethylmethacrylate) and poly[(<i>N</i> â€4â€vinylbenzyl), <i>N</i> , <i></i>	3.1	7
11	Doxorubicin and chrysin combination chemotherapy with novel pH-responsive poly [(lactide-co-glycolic acid)-block-methacrylic acid] nanoparticle. Journal of Drug Delivery Science and Technology, 2018, 46, 129-137.	3.0	17
12	A Novel Strategy for Synthesis of Polystyrene/Fe ₃ O ₄ Nanocomposite: RAFT Polymerization, Functionalization, and Coordination Techniques. Polymer-Plastics Technology and Engineering, 2017, 56, 873-882.	1.9	16
13	Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, "schizophrenic―micellization, and its performance as an anticancer drug delivery nanosystem. Journal of Colloid and Interface Science, 2017, 488, 282-293.	9.4	62
14	Novel â€~schizophrenic' diblock copolymer synthesized via RAFT polymerization: poly(2-succinyloxyethyl) Tj ET Monomers and Polymers, 2017, 20, 190-200.	TQq0 0 0 rş 1.6	rgBT /Overloo 34
15	Comparison of Modeling and Optimization of Methanol to Propylene (MTP) Over High Silica H-ZSM-5 NANO Catalyst Using Black-Box Modeling (ANN) and Meta-heuristic Optimizers (GA-PSO). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , 1.	1.9	1