David Cortez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7254508/publications.pdf

Version: 2024-02-01

64 10,219 39 63
papers citations h-index g-index

75 75 75 9316
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Oligomerization of DNA replication regulatory protein RADX is essential to maintain replication fork stability. Journal of Biological Chemistry, 2022, 298, 101672.	1.6	5
2	CHK1 phosphorylates PRIMPOL to promote replication stress tolerance. Science Advances, 2022, 8, eabm0314.	4.7	22
3	Topoisomerase II poisons inhibit vertebrate DNA replication through distinct mechanisms. EMBO Journal, 2022, 41, e110632.	3.5	7
4	ATR activation is regulated by dimerization of ATR activating proteins. Journal of Biological Chemistry, 2021, 296, 100455.	1.6	12
5	RADX controls RAD51 filament dynamics to regulate replication fork stability. Molecular Cell, 2021, 81, 1074-1083.e5.	4.5	26
6	RADX prevents genome instability by confining replication fork reversal to stalled forks. Molecular Cell, 2021, 81, 3007-3017.e5.	4.5	19
7	Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors. Science Advances, 2020, 6, .	4.7	53
8	HMCES Maintains Replication Fork Progression and Prevents Double-Strand Breaks in Response to APOBEC Deamination and Abasic Site Formation. Cell Reports, 2020, 31, 107705.	2.9	51
9	The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nature Reviews Molecular Cell Biology, 2020, 21, 633-651.	16.1	198
10	New insights into abasic site repair and tolerance. DNA Repair, 2020, 90, 102866.	1.3	86
11	Perturbing cohesin dynamics drives MRE11 nuclease-dependent replication fork slowing. Nucleic Acids Research, 2019, 47, 1294-1310.	6.5	38
12	Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators. Cell Reports, 2019, 28, 3497-3509.e4.	2.9	75
13	Protection of abasic sites during DNA replication by a stable thiazolidine protein-DNA cross-link. Nature Structural and Molecular Biology, 2019, 26, 613-618.	3 . 6	69
14	Replication-Coupled DNA Repair. Molecular Cell, 2019, 74, 866-876.	4.5	178
15	Common motifs in ETAA1 and TOPBP1 required for ATR kinase activation. Journal of Biological Chemistry, 2019, 294, 8395-8402.	1.6	29
16	Quantitative phosphoproteomics reveals mitotic function of the ATR activator ETAA1. Journal of Cell Biology, 2019, 218, 1235-1249.	2.3	45
17	HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA. Cell, 2019, 176, 144-153.e13.	13.5	127
18	RPA and RAD51: fork reversal, fork protection, and genome stability. Nature Structural and Molecular Biology, 2018, 25, 446-453.	3.6	264

#	Article	IF	Citations
19	RADX Modulates RAD51 Activity to Control Replication Fork Protection. Cell Reports, 2018, 24, 538-545.	2.9	88
20	An intrinsic S/G ₂ checkpoint enforced by ATR. Science, 2018, 361, 806-810.	6.0	215
21	Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nature Genetics, 2017, 49, 537-549.	9.4	81
22	Proteomic Analyses of the Eukaryotic Replication Machinery. Methods in Enzymology, 2017, 591, 33-53.	0.4	25
23	Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 696-714.	2.3	105
24	Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Molecular Cell, 2017, 67, 882-890.e5.	4.5	190
25	RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks. Molecular Cell, 2017, 67, 374-386.e5.	4.5	153
26	The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nature Reviews Molecular Cell Biology, 2017, 18, 622-636.	16.1	589
27	ETAA1 acts at stalled replication forks to maintain genome integrity. Nature Cell Biology, 2016, 18, 1185-1195.	4.6	204
28	Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 2016, 535, 382-387.	13.7	685
29	Identification of a Substrate Recognition Domain in the Replication Stress Response Protein Zinc Finger Ran-binding Domain-containing Protein 3 (ZRANB3). Journal of Biological Chemistry, 2016, 291, 8251-8257.	1.6	18
30	SMARCAL1 and telomeres: Replicating the troublesome ends. Nucleus, 2016, 7, 270-274.	0.6	11
31	A novel splice site mutation in <i>SMARCAL1</i> results in aberrant exon definition in a child with schimke immunoosseous dysplasia. American Journal of Medical Genetics, Part A, 2015, 167, 2260-2264.	0.7	15
32	Simian Virus Large T Antigen Interacts with the N-Terminal Domain of the 70 kD Subunit of Replication Protein A in the Same Mode as Multiple DNA Damage Response Factors. PLoS ONE, 2015, 10, e0116093.	1.1	7
33	High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling. Journal of Biological Chemistry, 2015, 290, 4110-4117.	1.6	55
34	SMARCAL1 maintains telomere integrity during DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14864-14869.	3.3	67
35	Stephen Elledge and the DNA damage response. DNA Repair, 2015, 35, 156-157.	1.3	0
36	Enhancer of Rudimentary Homolog Affects the Replication Stress Response through Regulation of RNA Processing. Molecular and Cellular Biology, 2015, 35, 2979-2990.	1.1	26

#	Article	IF	CITATIONS
37	Preventing replication fork collapse to maintain genome integrity. DNA Repair, 2015, 32, 149-157.	1.3	169
38	A whole genome RNAi screen identifies replication stress response genes. DNA Repair, 2015, 35, 55-62.	1.3	15
39	The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability. Molecular Cell, 2015, 59, 998-1010.	4.5	301
40	A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments. PLoS ONE, 2015, 10, e0125482.	1.1	99
41	Fork reversal, too much of a good thing. Cell Cycle, 2014, 13, 1049-1050.	1.3	17
42	SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products. PLoS Pathogens, 2014, 10, e1004536.	2.1	21
43	ATR Pathway Inhibition Is Synthetically Lethal in Cancer Cells with ERCC1 Deficiency. Cancer Research, 2014, 74, 2835-2845.	0.4	112
44	Mutation of Serine 1333 in the ATR HEAT Repeats Creates a Hyperactive Kinase. PLoS ONE, 2014, 9, e99397.	1.1	14
45	Substrate-Selective Repair and Restart of Replication Forks by DNA Translocases. Cell Reports, 2013, 3, 1958-1969.	2.9	136
46	ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes and Development, 2013, 27, 1610-1623.	2.7	343
47	Identification and Characterization of SMARCAL1 Protein Complexes. PLoS ONE, 2013, 8, e63149.	1.1	26
48	SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes and Development, 2012, 26, 151-162.	2.7	235
49	Defining genome maintenance pathways using functional genomic approaches. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 327-341.	2.3	5
50	Thr-1989 Phosphorylation Is a Marker of Active Ataxia Telangiectasia-mutated and Rad3-related (ATR) Kinase. Journal of Biological Chemistry, 2011, 286, 28707-28714.	1.6	101
51	Identification of Genome Maintenance Proteins with Functional Genomic Screens. FASEB Journal, 2010, 24, 304.1.	0.2	0
52	The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes and Development, 2009, 23, 2405-2414.	2.7	216
53	Common mechanisms of PIKK regulation. DNA Repair, 2009, 8, 1004-1008.	1.3	233
54	ATR: an essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 2008, 9, 616-627.	16.1	1,497

#	Article	IF	CITATION
55	Dpb11 activates the Mec1–Ddc2 complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18730-18734.	3.3	110
56	TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes and Development, 2008, 22, 1478-1489.	2.7	293
57	Function of the ATR N-terminal domain revealed by an ATM/ATR chimera. Experimental Cell Research, 2007, 313, 1667-1674.	1.2	15
58	ATRIP Oligomerization Is Required for ATR-dependent Checkpoint Signaling. Journal of Biological Chemistry, 2005, 280, 31390-31396.	1.6	69
59	Unwind and slow down: checkpoint activation by helicase and polymerase uncoupling. Genes and Development, 2005, 19, 1007-1012.	2.7	76
60	From The Cover: Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10078-10083.	3.3	295
61	Caffeine Inhibits Checkpoint Responses without Inhibiting the Ataxia-Telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) Protein Kinases. Journal of Biological Chemistry, 2003, 278, 37139-37145.	1.6	132
62	ATR and ATRIP: Partners in Checkpoint Signaling. Science, 2001, 294, 1713-1716.	6.0	867
63	Conducting the mitotic symphony. Nature, 2000, 406, 354-356.	13.7	28
64	Requirement of ATM-Dependent Phosphorylation of Brca1 in the DNA Damage Response to Double-Strand Breaks. Science, 1999, 286, 1162-1166.	6.0	941