Wenchao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7254164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel β-type Zr–Mo–Ti alloys for biological hard tissue replacements. Materials & Design, 2014, 53, 8-12.	5.1	43
2	Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. Journal of Colloid and Interface Science, 2022, 616, 422-432.	5.0	37
3	Atomic structure and electronic properties of Ag(111)/TiC(111) interface: Insights from first-principles simulations. Journal of Physics and Chemistry of Solids, 2019, 124, 212-220.	1.9	26
4	The electrochemical corrosion behavior of Pb–free Sn–8.5Zn–XCr solders in 3.5Âwt.% NaCl solution. Materials Chemistry and Physics, 2015, 168, 27-34.	2.0	25
5	Ab initio investigation into the structure and properties of Ir–Zr intermetallics for high-temperature structural applications. Computational Materials Science, 2017, 131, 146-159.	1.4	23
6	Theoretical understanding of atomic and electronic structures of the ZrC(111)/Cu(111) interface. Journal of Alloys and Compounds, 2019, 791, 431-437.	2.8	23
7	Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr–Sn system from first-principles calculations. Journal of Physics and Chemistry of Solids, 2015, 86, 177-185.	1.9	21
8	Theoretical investigation of the Al–Cr–B orthorhombic ternary compounds. Computational and Theoretical Chemistry, 2013, 1020, 51-56.	1.1	18
9	Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x = 0, 3) dental alloys through thermal oxidation treatment. Materials Science and Engineering C, 2017, 76, 260-268.	3.8	17
10	Insights into the atomic scale structure, bond characteristics and wetting behavior of Cu(001)/Cu6Sn5(110) interface: A first-principles investigation. Vacuum, 2021, 187, 110103.	1.6	17
11	Interfacial reaction and mechanical properties of Sn58Bi-XCr solder joints under isothermal aging conditions. Vacuum, 2021, 194, 110559.	1.6	17
12	Site preference of the alloying additions on mechanical and electronic properties of B2 ZrRu-based compounds. Computational Materials Science, 2016, 117, 1-6.	1.4	16
13	A comparative first-principles study on electronic structures and mechanical properties of ternary intermetallic compounds Al8Cr4Y and Al8Cu4Y: Pressure and tension effects. Journal of Physics and Chemistry of Solids, 2016, 98, 298-308.	1.9	15
14	Distribution trends and influence of 4d transition metal elements (Ru, Rh and Pd) doping on mechanical properties and martensitic transformation temperature of B2-ZrCu phase. Journal of Physics and Chemistry of Solids, 2017, 111, 372-382.	1.9	14
15	Adsorption and migration behavior of molybdenum atom on graphite (0001) surface. Applied Surface Science, 2019, 470, 1064-1070.	3.1	14
16	Theoretical Prediction of Transition Metal Alloying Effects on the Lightweight TiAl Intermetallic. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1451-1459.	1.1	12
17	Insight into interfacial structure and bonding nature of diamond(001)/Cr3C2(001) interface. Journal of Alloys and Compounds, 2019, 770, 82-89.	2.8	12
18	Development of CoCrFeNiVAlx High-Entropy Alloys Based on Solid Solution Strengthening. Jom, 2019, 71, 3473-3480.	0.9	12

Wenchao Yang

#	Article	IF	CITATIONS
19	Effect of Aluminum Addition on the Microstructure and Properties of Non-Eutectic Sn-20Bi Solder Alloys. Materials, 2019, 12, 1194.	1.3	12
20	Influence of Nb concentration on the structure, stability, and electronic and mechanical properties of D022 Al3Ti by first-principles calculations and experiments. Journal of Physics and Chemistry of Solids, 2019, 131, 243-253.	1.9	11
21	Enhanced C atom adsorption on Cu(111) substrate by doping rare earth element Y for Cu–diamond composites: A first-principles study. Journal of Alloys and Compounds, 2020, 831, 154747.	2.8	11
22	Characterization of Waste Amidoxime Chelating Resin and Its Reutilization Performance in Adsorption of Pb(II), Cu(II), Cd(II) and Zn(II) Ions. Metals, 2022, 12, 149.	1.0	11
23	Ab initio Insight Into the Structure and Properties of Zr–Si System. Physica Status Solidi (B): Basic Research, 2019, 256, 1900018.	0.7	9
24	New Zr–25Ti–xMo alloys for dental implant application: Properties characterization and surface analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 104017.	1.5	9
25	Development of novel CoCu _{0.5} FeNiVTi <i>_x</i> (<i>x</i> = 0, 0.5, 1, 1.5, 2) high-entropy alloys. Materials Science and Technology, 2018, 34, 952-960.	0.8	8
26	Effect of Graphene Nanosheet Addition on the Wettability and Mechanical Properties of Sn-20Bi-xGNS/Cu Solder Joints. Materials, 2020, 13, 3968.	1.3	8
27	Insight into the structural and electronic properties of orthorhombic Cr 3 C 2 (001) surface. Journal of Physics and Chemistry of Solids, 2018, 118, 68-72.	1.9	7
28	A dense gas dispersion model based on revised meteorological parameters and its performance evaluation. Atmospheric Environment, 2021, 244, 117953.	1.9	7
29	Influence of vacancy on the mechanical behavior, thermodynamic properties and electronic structure of orthorhombic Ti3Sn from first-principles calculations. Vacuum, 2021, 188, 110178.	1.6	7
30	Effect of Aging Treatment on the Corrosion Resistance Properties of 7N01 Extrusion Aluminum Alloy. Materials, 2021, 14, 3615.	1.3	6
31	Bonding characteristics and site occupancies of alloying elements in Zr3Al2 compound from first principles. Journal of Alloys and Compounds, 2015, 622, 960-965.	2.8	5
32	Phase diagram of the Al–Er–Mo ternary system at 873 K. Phase Transitions, 2015, 88, 1111-1121.	0.6	5
33	The different influences of the two incorporation sites of B atoms on the mechanical and thermodynamic properties of B2–ZrCu compounds: a first-principle calculation. Philosophical Magazine, 2018, 98, 517-530.	0.7	5
34	Mechanism of FCC structure formation in NiCoFeCuMn equiatomic high-entropy alloys. Arabian Journal for Science and Engineering, 2019, 44, 6637-6644.	1.7	5
35	The Stability and Electronic Structure of Cu(200)/AuCu(200) Interface: An Insight from First-Principle Calculation. Materials, 2022, 15, 1506.	1.3	4
36	Experimental Investigation of Phase Equilibria in the Ho-Ti-Si Ternary System at 973 K (700°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1851-1858.	1.1	3

#	Article	IF	CITATIONS
37	Understanding the influence of rare earth yttrium on surface characterizations of orthorhombic α-Mo2C(023) surface: A first-principle calculation approach. Surface Science, 2021, 708, 121823.	0.8	3
38	Systematic analysis of the structural, elastic, and electronic properties of Ti–Cu–Me (Me=Al, Ga and) Tj ETQc	10 0 0 rgB⁻ 1.9 rgB⁻	[/Qverlock 1
39	Solid-State Phase Equilibria of the V-Si-Gd System at 973ÂK (700°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4194-4200.	1.1	2
40	Experimental Phase Diagram of the Al–Mo–Gd Ternary System at 773ÂK. Journal of Phase Equilibria and Diffusion, 2015, 36, 218-223.	0.5	2
41	Solid-State Phase Equilibria and Intermetallic Compounds of the Si-V-Zr Ternary System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6569-6576.	1.1	2
42	Intrinsic Properties and Structure of AB2 Laves Phase ZrW2. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3082-3089.	1.1	2
43	Properties and electronic structure of Al/Mo2C interfaces: insights from first principle simulation. Philosophical Magazine, 2021, 101, 1061-1080.	0.7	2
44	Effects of Yttrium Addition on the Microstructure Evolution and Electrochemical Corrosion of SN-9Zn Lead-Free Solders Alloy. Materials, 2021, 14, 2549.	1.3	2
45	Morphological Evolution of TiB2 and TiAl3 in Al–Ti–B Master Alloy Using Different Ti Adding Routes. Materials, 2022, 15, 1984.	1.3	2
46	Phase-Equilibrium Investigation of the Al-Cr-Er Ternary System at 773ÂK (500°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2956-2970.	1.1	1
47	Al–Cr–Dy system: Phase relationships and crystallography. Journal of Solid State Chemistry, 2019, 276, 47-55.	1.4	1
48	Solid State Phase Equilibria of an Al–Sn–Y Ternary System. Materials, 2019, 12, 444.	1.3	1
49	Phase-equilibria investigation of the Dy-Mo-Si ternary system at 1173ÂK (900°C). Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 72, 102232.	0.7	1
50	Solid State Phase Equilibria and Solid Solution of the Si-Y-Zr Ternary System at 1173ÂK. Journal of Phase Equilibria and Diffusion, 2018, 39, 401-411.	0.5	0
51	Solid-State Phase Diagram of the Ho-Zr-Si Ternary System at 973ÂK (700°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 966-974.	1.1	0
52	Design and Characterization of Novel Biomedical Zr–4Cu–xNb–xSn Alloys for Hard Tissue Substitution. Arabian Journal for Science and Engineering, 2021, 46, 6075-6084.	1.7	0

53	Exploration of Rare-Earth Element Sc to Enhance Microstructure, Mechanical Properties and Corrosion Resistance of Zrâ \in "8.8Si Biomedical Alloy. Journal of Bionic Engineering, 0, , 1.	2.7	0	
----	---	-----	---	--