
## Antonio Rodero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7253777/publications.pdf Version: 2024-02-01



Δητομίο Ρορέρο

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An Abel inversion method for radially resolved measurements in the axial injection torch.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1665-1680.                                                    | 2.9  | 124       |
| 2  | Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye. Chemosphere, 2017, 180, 239-246.                                                                    | 8.2  | 116       |
| 3  | The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1.<br>Plasmas at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 1553-1566.         | 2.9  | 66        |
| 4  | The role of molecular rare gas ions in plasmas operated at atmospheric pressure. Plasma Sources<br>Science and Technology, 2003, 12, 464-474.                                                                          | 3.1  | 64        |
| 5  | CO 2 concentration in naturally ventilated classrooms located in different climates—Measurements<br>and simulations. Energy and Buildings, 2016, 129, 491-498.                                                         | 6.7  | 59        |
| 6  | Spectroscopic study of a stationary surface-wave sustained argon plasma column at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1733-1745.                                         | 2.9  | 58        |
| 7  | Determination of the Excitation Temperature in a Nonthermodynamic-Equilibrium High-Pressure<br>Helium Microwave Plasma Torch. Applied Spectroscopy, 1997, 51, 778-784.                                                 | 2.2  | 55        |
| 8  | The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 2:<br>Plasmas at reduced pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 1085-1098.             | 2.9  | 43        |
| 9  | Preliminary spectroscopic experiments with helium microwave induced plasma produced in air by use of a new structure: the axial injection torch. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1996, 51, 467-479.  | 2.9  | 42        |
| 10 | Disposal Behavior of Used Masks during the COVID-19 Pandemic in the Moroccan Community: Potential<br>Environmental Impact. International Journal of Environmental Research and Public Health, 2021, 18,<br>4382.       | 2.6  | 39        |
| 11 | Excitation Kinetic in an Argon Plasma Column Produced by a Surface Wave at Atmospheric Pressure.<br>Journal of the Physical Society of Japan, 1996, 65, 948-954.                                                       | 1.6  | 27        |
| 12 | Radial distribution of electron density, gas temperature and air species in a torch kind helium plasma<br>produced at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 709-721.       | 2.9  | 23        |
| 13 | An experimental study of the deviation from equilibrium in a high-pressure microwave helium plasma produced by an axial injection torch. Journal Physics D: Applied Physics, 1996, 29, 681-686.                        | 2.8  | 22        |
| 14 | Radial description of excitation processes of molecular and atomic species in a high-pressure helium microwave plasma torch. Journal Physics D: Applied Physics, 2005, 38, 3768-3777.                                  | 2.8  | 22        |
| 15 | Gas temperature determination of non-thermal atmospheric plasmas from the collisional broadening<br>of argon atomic emission lines. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198,<br>93-103. | 2.3  | 19        |
| 16 | The analysis of microclimate parameters in the classrooms located in different climate zones. Applied<br>Thermal Engineering, 2017, 113, 1088-1096.                                                                    | 6.0  | 18        |
| 17 | Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure. Journal of Hazardous Materials, 2007, 148, 419-427.                                   | 12.4 | 16        |
| 18 | Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure. Journal of Hazardous Materials, 2011, 186, 820-826.                                      | 12.4 | 15        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Determination of Physicochemical Water Quality of the Ghis-Nekor Aquifer (Al Hoceima, Morocco)<br>Using Hydrochemistry, Multiple Isotopic Tracers, and the Geographical Information System (GIS).<br>Water (Switzerland), 2022, 14, 606.               | 2.7 | 14        |
| 20 | Experimental study of the creation of a surface-wave-sustained argon plasma column at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1727-1737.                                                                     | 2.9 | 13        |
| 21 | Efficiency of a solar collector system for the public building depending on its location.<br>Environmental Science and Pollution Research, 2020, 27, 101-110.                                                                                          | 5.3 | 12        |
| 22 | Application of a Microwave Helium Plasma Torch Operating at Atmospheric Pressure to Destroy<br>Trichloroethylene. Plasma Chemistry and Plasma Processing, 2008, 28, 415-428.                                                                           | 2.4 | 11        |
| 23 | Thermal inequilibrium of atmospheric helium microwave plasma produced by an axial injection torch.<br>Journal of Applied Physics, 2005, 98, 093304.                                                                                                    | 2.5 | 10        |
| 24 | Modeling of an axial injection torch. EPJ Applied Physics, 2009, 46, 21001.                                                                                                                                                                            | 0.7 | 10        |
| 25 | Spectroscopic study of a surface-wave-sustained argon plasma column at atmospheric pressure by<br>means of a power interruption technique. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55,<br>1611-1621.                                   | 2.9 | 8         |
| 26 | The Stark-crossing method for the simultaneous determination of the electron temperature and density in plasmas. Journal of Physics: Conference Series, 2006, 44, 70-79.                                                                               | 0.4 | 8         |
| 27 | Study of the plasma–liquid interaction for an argon nonthermal microwave plasma jet from the analysis of benzene degradation. Plasma Processes and Polymers, 2020, 17, 2000030.                                                                        | 3.0 | 8         |
| 28 | Characterization of an Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Biofilm<br>Eradication. Plasma Chemistry and Plasma Processing, 2018, 38, 535-556.                                                                             | 2.4 | 7         |
| 29 | Carbon Dioxide Decomposition by a Parallel-Plate Plasma Reactor: Experiments and 2-D Modelling.<br>Applied Sciences (Switzerland), 2021, 11, 10047.                                                                                                    | 2.5 | 7         |
| 30 | Carbon Dioxide Human Gains—A New Approach of the Estimation. Sustainability, 2019, 11, 7128.                                                                                                                                                           | 3.2 | 6         |
| 31 | Measuring the air fraction and the gas temperature in non-thermal argon plasma jets through the study of the air influence on the collisional broadening of some argon atomic emission lines. Plasma Sources Science and Technology, 2020, 29, 055006. | 3.1 | 5         |
| 32 | Analysis of the Applicability of the Parabolic Trough Solar Thermal Power Plants in the Locations with a Temperate Climate. Energies, 2021, 14, 3003.                                                                                                  | 3.1 | 5         |
| 33 | SPECTROSCOPIC STUDY OF A HELIUM MICROWAVE DISCHARGE PRODUCED BY THE AXIAL INJECTION TORCH.<br>High Temperature Material Processes, 2004, 8, 519-533.                                                                                                   | 0.6 | 5         |
| 34 | Analysis of the Solar Collectors Installation on a Roof of the Small Public Building in Poland,<br>Lithuania and Spain—A Case Study. Proceedings (mdpi), 2018, 2, .                                                                                    | 0.2 | 4         |
| 35 | Using the Pairs of Lines Broadened by Collisions with Neutral and Charged Particles for Gas<br>Temperature Determination of Argon Non-Thermal Plasmas at Atmospheric Pressure. Atoms, 2017, 5, 41.                                                     | 1.6 | 3         |
| 36 | The effect of the gas flow-rate on the radial structure of a torch-like helium plasma. IEEE<br>Transactions on Plasma Science, 2005, 33, 422-423.                                                                                                      | 1.3 | 2         |

ANTONIO RODERO

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Method for Estimation of CO2 Gains from Persons in Builidings. Proceedings (mdpi), 2018, 2, 1309.                                                                                           | 0.2 | 2         |
| 38 | Experimental Study of a Rotating Electrode Plasma Reactor for Hydrogen Production from Liquid Petroleum Gas Conversion. Applied Sciences (Switzerland), 2022, 12, 4045.                     | 2.5 | 2         |
| 39 | The Advisability of Employment of Renewable Energy Sources in DHW Systems in the Kindergarten.<br>Proceedings (mdpi), 2019, 16, 41.                                                         | 0.2 | 1         |
| 40 | The Study of Soil Temperature Distribution for Very Low-Temperature Geothermal Energy Applications in Selected Locations of Temperate and Subtropical Climate. Energies, 2022, 15, 3345.    | 3.1 | 1         |
| 41 | Distribution of Excited Species in a Helium Plasma Flame During the Destruction of Carbon<br>Tetrachloride at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2008, 36, 984-985. | 1.3 | Ο         |
| 42 | Preface: Proceedings of the 8th International Conference<br>ISMO'19—Innovations-Sustainability-Modernity-Openness. Proceedings (mdpi), 2019, 16, .                                          | 0.2 | 0         |
| 43 | Preliminary Study on the Treatment of Benzene Contaminated Water using an Argon Microwave<br>Plasma Jet. IOP Conference Series: Materials Science and Engineering, 2020, 809, 012019.       | 0.6 | 0         |
| 44 | TIME-DEPENDENT PLASMA PROPERTIES STUDIED WITH A 2-D THOMSON SCATTERING SYSTEM. High<br>Temperature Material Processes, 2002, 6, 14.                                                         | 0.6 | 0         |