
Tim M Blackburn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7253615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drivers of alien species composition in bird markets across the world. Ecology and Evolution, 2022, 12, e8397.	0.8	6
2	What factors increase the vulnerability of native birds to the impacts of alien birds?. Ecography, 2021, 44, 727-739.	2.1	15
3	Around the world in 500 years: Interâ€regional spread of alien species over recent centuries. Global Ecology and Biogeography, 2021, 30, 1621-1632.	2.7	29
4	DAMA: the global Distribution of Alien Mammals database. Ecology, 2021, 102, e03474.	1.5	20
5	Environmental resistance predicts the spread of alien species. Nature Ecology and Evolution, 2021, 5, 322-329.	3.4	18
6	Contribution of non-native galliforms to annual variation in biomass of British birds. Biological Invasions, 2021, 23, 1549-1562.	1.2	6
7	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	4.2	327
8	Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. Science Advances, 2021, 7, eabj5790.	4.7	32
9	Colonization pressure: a second null model for invasion biology. Biological Invasions, 2020, 22, 1221-1233.	1.2	26
10	Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Science Advances, 2020, 6, .	4.7	33
11	Zoonotic host diversity increases in human-dominated ecosystems. Nature, 2020, 584, 398-402.	13.7	475
12	Invasion costs, impacts, and human agency: response to Sagoff 2020. Conservation Biology, 2020, 34, 1579-1582.	2.4	26
13	A global assessment of human influence on niche shifts and risk predictions of bird invasions. Global Ecology and Biogeography, 2020, 29, 1956-1966.	2.7	16
14	Animal invaders threaten protected areas worldwide. Nature Communications, 2020, 11, 2892.	5.8	59
15	Evidence for Rapoport's rule and latitudinal patterns in the global distribution and diversity of alien bird species. Journal of Biogeography, 2020, 47, 1362-1372.	1.4	10
16	Lasting the distance: The survival of alien birds shipped to New Zealand in the 19th century. Ecology and Evolution, 2020, 10, 3944-3953.	0.8	8
17	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	4.7	928
18	Bergmann's rule in alien birds. Ecography, 2019, 42, 102-110.	2.1	13

#	Article	IF	CITATIONS
19	A general model for alien species richness. Biological Invasions, 2019, 21, 2665-2677.	1.2	16
20	Location-level processes drive the establishment of alien bird populations worldwide. Nature, 2019, 571, 103-106.	13.7	59
21	Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment, 2019, 17, 203-207.	1.9	220
22	Observations of a novel predatory gull behavior on an invasive ascidian: A new consequence of coastal urban sprawl?. Ecosphere, 2019, 10, e02636.	1.0	5
23	Humanâ€habitat associations in the native distributions of alien bird species. Journal of Applied Ecology, 2019, 56, 1189-1199.	1.9	22
24	Understanding the origins of the ringâ€necked parakeet in the UK. Journal of Zoology, 2019, 312, 1.	0.8	6
25	The ins and outs of acclimatisation: imports versus translocations of skylarks and starlings in 19th century New Zealand. Biological Invasions, 2019, 21, 1395-1413.	1.2	3
26	Macroecology and invasion biology. Global Ecology and Biogeography, 2019, 28, 28-32.	2.7	4
27	Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Global Change Biology, 2019, 25, 1032-1048.	4.2	117
28	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	3.3	416
29	Identifying the factors that determine the severity and type of alien bird impacts. Diversity and Distributions, 2018, 24, 800-810.	1.9	35
30	How to incorporate information on propagule pressure in the analysis of alien establishment success. Methods in Ecology and Evolution, 2018, 9, 1097-1108.	2.2	5
31	A prioritised list of invasive alien species to assist the effective implementation of <scp>EU</scp> legislation. Journal of Applied Ecology, 2018, 55, 539-547.	1.9	86
32	Determinants of data deficiency in the impacts of alien bird species. Ecography, 2018, 41, 1401-1410.	2.1	20
33	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	2.2	244
34	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	2.6	52
35	Species invasions and the phylogenetic signal in geographical range size. Global Ecology and Biogeography, 2018, 27, 1080-1092.	2.7	5
36	Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biology, 2018, 16, e2005987.	2.6	156

#	Article	IF	CITATIONS
37	Abundance, biomass and energy use of native and alien breeding birds in Britain. Biological Invasions, 2018, 20, 3563-3573.	1.2	8
38	A vision for global monitoring of biological invasions. Biological Conservation, 2017, 213, 295-308.	1.9	178
39	Parasites as Drivers and Passengers of Human-Mediated Biological Invasions. EcoHealth, 2017, 14, 61-73.	0.9	48
40	Invasive Alien Species: Denialism, Disagreement, Definitions, and Dialogue. Trends in Ecology and Evolution, 2017, 32, 312-314.	4.2	45
41	How repeatable is the Environmental Impact Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments of amphibians. Ecology and Evolution, 2017, 7, 2661-2670.	0.8	29
42	Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution, 2017, 1, .	3.4	315
43	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	4.2	312
44	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	4.2	3
45	Island extinctions: processes, patterns, and potential for ecosystem restoration. Environmental Conservation, 2017, 44, 348-358.	0.7	102
46	Geographical range expansion of alien birds and environmental matching. Ibis, 2017, 159, 193-203.	1.0	8
47	The Rise of Invasive Species Denialism. Trends in Ecology and Evolution, 2017, 32, 3-6.	4.2	150
48	The Global Distribution and Drivers of Alien Bird Species Richness. PLoS Biology, 2017, 15, e2000942.	2.6	126
49	Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data. PLoS ONE, 2017, 12, e0187602.	1.1	36
50	A global analysis of the determinants of alien geographical range size in birds. Global Ecology and Biogeography, 2016, 25, 1346-1355.	2.7	43
51	Managing alien bird species: Time to move beyond "100 of the worst―lists?. Bird Conservation International, 2016, 26, 154-163.	0.7	16
52	Application of the <scp>E</scp> nvironmental <scp>I</scp> mpact <scp>C</scp> lassification for <scp>A</scp> lien <scp>T</scp> axa (EICAT) to a global assessment of alien bird impacts. Diversity and Distributions, 2016, 22, 919-931.	1.9	79
53	The wildlife pet trade as a driver of introduction and establishment in alien birds in Taiwan. Biological Invasions, 2016, 18, 215-229.	1.2	31
54	On the island biogeography of aliens: a global analysis of the richness of plant and bird species on oceanic islands. Global Ecology and Biogeography, 2016, 25, 859-868.	2.7	67

#	Article	IF	CITATIONS
55	Alien species as a driver of recent extinctions. Biology Letters, 2016, 12, 20150623.	1.0	835
56	Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200Âyears. Biological Invasions, 2016, 18, 907-920.	1.2	114
57	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	1.9	184
58	Going Cheap: Determinants of Bird Price in the Taiwanese Pet Market. PLoS ONE, 2015, 10, e0127482.	1.1	40
59	Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2988-9.	3.3	32
60	Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience, 2015, 65, 55-63.	2.2	301
61	The influence of numbers on invasion success. Molecular Ecology, 2015, 24, 1942-1953.	2.0	196
62	Long after the event, or four things we (should) know about bird invasions. Journal of Ornithology, 2015, 156, 15-25.	0.5	30
63	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	2.2	202
64	Patterns of non-randomness in the composition and characteristics of the Taiwanese bird trade. Biological Invasions, 2014, 16, 2563-2575.	1.2	41
65	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	2.6	648
66	Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods in Ecology and Evolution, 2014, 5, 1255-1263.	2.2	62
67	Comparing determinants of alien bird impacts across two continents: implications for risk assessment and management. Ecology and Evolution, 2014, 4, 2957-2967.	0.8	29
68	Effects of directional environmental change on extinction dynamics in experimental microbial communities are predicted by a simple model. Oikos, 2014, 123, 141-150.	1.2	9
69	Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Global Change Biology, 2014, 20, 3859-3871.	4.2	213
70	A population model for predicting the successful establishment of introduced bird species. Oecologia, 2014, 175, 417-428.	0.9	35
71	Defining the Impact of Nonâ€Native Species. Conservation Biology, 2014, 28, 1188-1194.	2.4	308
72	A Potential Metric of the Attractiveness of Bird Song to Humans. Ethology, 2014, 120, 305-312.	0.5	18

#	Article	IF	CITATIONS
73	UK bill could prompt biodiversity loss. Nature, 2014, 512, 253-253.	13.7	7
74	Effects of Recent Environmental Change on Accuracy of Inferences of Extinction Status. Conservation Biology, 2014, 28, 971-981.	2.4	11
75	Longâ€distance dispersal maximizes evolutionary potential during rapid geographic range expansion. Molecular Ecology, 2013, 22, 5793-5804.	2.0	77
76	Maximizing the success of assisted colonizations. Animal Conservation, 2013, 16, 161-169.	1.5	45
77	Experimentally testing the accuracy of an extinction estimator: <scp>S</scp> olow's optimal linear estimation model. Journal of Animal Ecology, 2013, 82, 345-354.	1.3	47
78	What determines the impact of alien birds and mammals in Europe?. Biological Invasions, 2013, 15, 785-797.	1.2	35
79	The performance of the global protected area system in capturing vertebrate geographic ranges. Biodiversity and Conservation, 2013, 22, 1033-1047.	1.2	35
80	Propagule pressure as a driver of establishment success in deliberately introduced exotic species: fact or artefact?. Biological Invasions, 2013, 15, 1459-1469.	1.2	51
81	Interactions between assembly order and temperature can alter both short―and longâ€ŧerm community composition. Ecology and Evolution, 2013, 3, 5201-5208.	0.8	27
82	Magnitude and variation of prehistoric bird extinctions in the Pacific. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6436-6441.	3.3	143
83	Species' Life-History Traits Explain Interspecific Variation in Reservoir Competence: A Possible Mechanism Underlying the Dilution Effect. PLoS ONE, 2013, 8, e54341.	1.1	77
84	Walking speed adaptation ability of <i>Myzus persicae</i> to different temperature conditions. Bulletin of Entomological Research, 2012, 102, 303-313.	0.5	6
85	Does supplemental feeding affect the viability of translocated populations? The example of the hihi. Animal Conservation, 2012, 15, 337-350.	1.5	33
86	Establishment of exotic parasites: the origins and characteristics of an avian malaria community in an isolated island avifauna. Ecology Letters, 2012, 15, 1112-1119.	3.0	75
87	Effect of latitude and acclimation on the lethal temperatures of the peachâ€potato aphid <i>Myzus persicae</i> . Agricultural and Forest Entomology, 2012, 14, 69-79.	0.7	26
88	Effects of acclimation and latitude on the activity thresholds of the aphid <i>Myzus persicae</i> in Europe. Journal of Applied Entomology, 2012, 136, 332-346.	0.8	23
89	Exotic species richness and native species endemism increase the impact of exotic species on islands. Global Ecology and Biogeography, 2012, 21, 841-850.	2.7	37
90	A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 2011, 26, 333-339.	4.2	1,762

#	Article	IF	CITATIONS
91	Determinants of species abundance in the Quaternary vertebrate fossil record. Paleobiology, 2011, 37, 537-546.	1.3	35
92	Climatic Predictors of Temperature Performance Curve Parameters in Ectotherms Imply Complex Responses to Climate Change. American Naturalist, 2011, 177, 738-751.	1.0	384
93	Passerine introductions to New Zealand support a positive effect of propagule pressure on establishment success. Biodiversity and Conservation, 2011, 20, 2189-2199.	1.2	30
94	Frog community responses to recent American bullfrog invasions. Environmental Epigenetics, 2011, 57, 83-92.	0.9	34
95	A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic. Journal of Insect Physiology, 2010, 56, 115-122.	0.9	54
96	Hyperthermic aphids: Insights into behaviour and mortality. Journal of Insect Physiology, 2010, 56, 123-131.	0.9	52
97	Dying for conservation: eradicating invasive alien species in the face of opposition. Animal Conservation, 2010, 13, 227-228.	1.5	27
98	Changes in nonâ€randomness in the expanding introduced avifauna of the world. Ecography, 2010, 33, 168-174.	2.1	11
99	The Impact of Conservation on the Status of the World's Vertebrates. Science, 2010, 330, 1503-1509.	6.0	1,209
100	Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells. PLoS ONE, 2010, 5, e12054.	1.1	48
101	Sometimes the obvious answer is the right one: a response to â€~Missing the rarest: is the positive interspecific abundance–distribution relationship a truly general macroecological pattern?'. Biology Letters, 2009, 5, 777-778.	1.0	5
102	Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1449-1457.	1.2	84
103	The role of species traits in the establishment success of exotic birds. Global Change Biology, 2009, 15, 2852-2860.	4.2	146
104	The biogeography of avian extinctions on oceanic islands revisited. Journal of Biogeography, 2009, 36, 1613-1614.	1.4	1
105	Invasion success and threat status: two sides of a different coin?. Ecography, 2009, 32, 83-88.	2.1	33
106	Global biogeography and ecology of body size in birds. Ecology Letters, 2009, 12, 249-259.	3.0	229
107	One Hundred Questions of Importance to the Conservation of Global Biological Diversity. Conservation Biology, 2009, 23, 557-567.	2.4	468
108	The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions, 2009, 15, 904-910.	1.9	495

#	Article	IF	CITATIONS
109	Are avian eggshell colours effective intraspecific communication signals in the Muscicapoidea? A perceptual modelling approach. Ibis, 2009, 151, 689-698.	1.0	48
110	Energy Availability and Density Estimates in African Ungulates. American Naturalist, 2009, 173, 698-704.	1.0	76
111	Biodiversity Conservation and the Millennium Development Goals. Science, 2009, 325, 1502-1503.	6.0	216
112	Eggshell colour does not predict measures of maternal investment in eggs of Turdus thrushes. Die Naturwissenschaften, 2008, 95, 713-721.	0.6	74
113	Threats to Avifauna on Oceanic Islands Revisited. Conservation Biology, 2008, 22, 492-494.	2.4	4
114	Phylogenetic analysis of the allometric scaling of therapeutic regimes for birds. Journal of Zoology, 2008, 275, 359-367.	0.8	9
115	The island biogeography of exotic bird species. Global Ecology and Biogeography, 2008, 17, 246-251.	2.7	61
116	Regional variation in the historical components of global avian species richness. Global Ecology and Biogeography, 2008, 17, 340-351.	2.7	34
117	The varying role of population abundance in structuring indices of biotic homogenization. Journal of Biogeography, 2008, 35, 884-892.	1.4	29
118	Scaling of gas exchange cycle frequency in insects. Biology Letters, 2008, 4, 127-129.	1.0	14
119	Lessons from introductions of exotic species as a possible information source for managing translocations of birds. Wildlife Research, 2008, 35, 193.	0.7	10
120	Using aliens to explore how our planet works. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9-10.	3.3	17
121	Spatial turnover in the global avifauna. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1567-1574.	1.2	151
122	Basal metabolic rate of birds is associated with habitat temperature and precipitation, not primary productivity. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 287-293.	1.2	134
123	Are spatial regression methods a panacea or a Pandora's box? A reply to Beale et al. (2007). Ecography, 2007, 30, 848-851.	2.1	27
124	ALLOMETRIC EXPONENTS DO NOT SUPPORT A UNIVERSAL METABOLIC ALLOMETRY. Ecology, 2007, 88, 315-323.	1.5	215
125	Topography, energy and the global distribution of bird species richness. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1189-1197.	1.2	216

126 Grenyer et al. reply. Nature, 2007, 450, E20-E20.

13.7 3

#	Article	IF	CITATIONS
127	Environmental predictors of global parrot (Aves: Psittaciformes) species richness and phylogenetic diversity. Global Ecology and Biogeography, 2007, 16, 220-233.	2.7	48
128	Causes of extinction in island birds. Animal Conservation, 2007, 10, 149-150.	1.5	39
129	Patterns of nonâ€randomness in the exotic avifauna of Florida. Diversity and Distributions, 2007, 13, 519-526.	1.9	32
130	Spatial scale and evolutionary history determine the degree of taxonomic homogenization across island bird assemblages. Diversity and Distributions, 2007, 13, 458-466.	1.9	42
131	A nondestructive method for extracting maternally derived egg yolk carotenoids. Journal of Field Ornithology, 2007, 78, 314-321.	0.3	3
132	Human impacts and the global distribution of extinction risk. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2127-2133.	1.2	123
133	A stochastic model for integrating changes in species richness and community similarity across spatial scales. Oikos, 2006, 115, 207-218.	1.2	27
134	Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecology Letters, 2006, 9, 1308-1320.	3.0	105
135	There's more to macroecology than meets the eye. Global Ecology and Biogeography, 2006, 15, 537-540.	2.7	16
136	Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology, 2006, 75, 1426-1439.	1.3	131
137	A comparative analysis of the diving behaviour of birds and mammals. Functional Ecology, 2006, 20, 889-899.	1.7	61
138	Global distribution and conservation of rare and threatened vertebrates. Nature, 2006, 444, 93-96.	13.7	462
139	Reproducibility and Repeatability in Ecology. BioScience, 2006, 56, 958.	2.2	63
140	Global Patterns of Geographic Range Size in Birds. PLoS Biology, 2006, 4, e208.	2.6	189
141	Egg carotenoids in passerine birds introduced to New Zealand: relations to ecological factors, integument coloration and phylogeny. Functional Ecology, 2005, 19, 719-726.	1.7	24
142	Investigating geographic variation in clutch size using a natural experiment. Functional Ecology, 2005, 19, 616-624.	1.7	47
143	Global hotspots of species richness are not congruent with endemism or threat. Nature, 2005, 436, 1016-1019.	13.7	993
144	Species' geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos, 2005, 108, 7-17.	1.2	124

#	Article	IF	CITATIONS
145	Brain size and resource specialization predict long-term population trends in British birds. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2305-2311.	1.2	172
146	Causes of exotic bird establishment across oceanic islands. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2059-2063.	1.2	25
147	Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5460-5465.	3.3	780
148	The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 2005, 20, 223-228.	4.2	1,964
149	FUNCTIONAL DIVERSITY OF MAMMALIAN PREDATORS AND EXTINCTION IN ISLAND BIRDS. Ecology, 2005, 86, 2916-2923.	1.5	94
150	Publication and Rejection among Successful Ecologists. BioScience, 2004, 54, 234.	2.2	16
151	Extinction and endemism in the New Zealand avifauna. Global Ecology and Biogeography, 2004, 13, 509-517.	2.7	113
152	Influences on the transport and establishment of exotic bird species: an analysis of the parrots (Psittaciformes) of the world. Global Change Biology, 2004, 10, 417-426.	4.2	125
153	Body size trends in a Holocene island bird assemblage. Ecography, 2004, 27, 59-67.	2.1	13
154	Extinction in island endemic birds reconsidered. Ecography, 2004, 27, 124-129.	2.1	8
155	Bergmann's rule and the mammal fauna of northern North America. Ecography, 2004, 27, 715-724.	2.1	181
156	Method in macroecology. Basic and Applied Ecology, 2004, 5, 401-412.	1.2	36
157	Macroecology. Basic and Applied Ecology, 2004, 5, 385-387.	1.2	9
158	Mistakes in the analysis of exotic species establishment: source pool designation and correlates of introduction success among parrots (Aves: Psittaciformes) of the world. Journal of Biogeography, 2004, 31, 277-284.	1.4	61
159	The influence of spatial resolution on macroecological patterns of range size variation: a case study using parrots (Aves: Psittaciformes) of the world. Journal of Biogeography, 2004, 31, 285-293.	1.4	31
160	Avian Extinction and Mammalian Introductions on Oceanic Islands. Science, 2004, 305, 1955-1958.	6.0	681
161	Changes in the breeding biology of the Welcome Swallow (Hirundo tahitica) in New Zealand since colonisation. Emu, 2003, 103, 215-220.	0.2	5
162	Dispersal and the interspecific abundance-occupancy relationship in British birds. Global Ecology and Biogeography, 2003, 12, 373-379.	2.7	44

#	Article	IF	CITATIONS
163	Publication rejection among ecologists. Trends in Ecology and Evolution, 2003, 18, 375-376.	4.2	20
164	Large-scale dynamics in colonization and extinction for breeding birds in Britain. Journal of Animal Ecology, 2002, 71, 390-399.	1.3	34
165	Extrinsic factors and the population sizes of threatened birds. Ecology Letters, 2002, 5, 568-576.	3.0	23
166	Scale in macroecology. Global Ecology and Biogeography, 2002, 11, 185-189.	2.7	85
167	Local avian assemblages as random draws from regional pools. Ecography, 2001, 24, 50-58.	2.1	33
168	Determinants of establishment success in introduced birds. Nature, 2001, 414, 195-197.	13.7	280
169	Linking patterns in macroecology. Journal of Animal Ecology, 2001, 70, 338-352.	1.3	63
170	Abundance-occupancy relationships. Journal of Applied Ecology, 2000, 37, 39-59.	1.9	667
171	The future of evolution. Trends in Ecology and Evolution, 2000, 15, 307-308.	4.2	2
172	Does development mode organize life-history traits in the parasitoid Hymenoptera?. Journal of Animal Ecology, 1999, 68, 906-916.	1.3	83
173	Determinants of geographical range sizes: a test using introduced New Zealand birds. Journal of Animal Ecology, 1999, 68, 963-975.	1.3	62
174	Does variation in census area confound density comparisons?. Journal of Applied Ecology, 1999, 36, 191-204.	1.9	64
175	Do local abundances of British birds change with proximity to range edge?. Journal of Biogeography, 1999, 26, 493-505.	1.4	64
176	Intraspecific relationships between abundance and occupancy among species of Paridae and Sylviidae in Britain. Ecoscience, 1999, 6, 131-142.	0.6	15
177	Density, Survey Area, and the Perfection (Or Otherwise) of Ecologists. Oikos, 1999, 85, 570.	1.2	10
178	Species-range size distributions in Britain. Ecography, 1998, 21, 361-370.	2.1	40
179	Macroecological patterns in British breeding birds: covariation of species'geographical range sizes at differing spatial scales. Ecography, 1998, 21, 527-534.	2.1	17
180	Interspecific differences in intraspecific abundance-range size relationships of British breeding birds. Ecography, 1998, 21, 149-158.	2.1	35

#	Article	IF	CITATIONS
181	The anatomy of the interspecific abundance-range size relationship for the British avifauna: I. Spatial patterns. Ecology Letters, 1998, 1, 38-46.	3.0	45
182	The anatomy of the interspecific abundance-range size relationship for the British avifauna: II. Temporal dynamics. Ecology Letters, 1998, 1, 47-55.	3.0	50
183	Aggregation and interspecific abundance-occupancy relationships. Journal of Animal Ecology, 1998, 67, 995-999.	1.3	40
184	The geographic ranges of mammalian species in South America: spatial patterns in environmental resistance and anisotropy. Journal of Biogeography, 1998, 25, 1093-1103.	1.4	70
185	Rapoport's rule: time for an epitaph?. Trends in Ecology and Evolution, 1998, 13, 70-74.	4.2	310
186	Reply from K.J. Gaston, T.M. Blackburn and J.I. Spicer. Trends in Ecology and Evolution, 1998, 13, 242.	4.2	4
187	Metapopulation Dynamics, Abundance, and Distribution in a Microecosystem. , 1998, 281, 2045-2047.		391
188	Impacts of Rising Atmospheric Carbon Dioxide on Model Terrestrial Ecosystems. Science, 1998, 280, 441-443.	6.0	212
189	Abundance-range size relationships of macrolepidoptera in Britain: the effects of taxonomy and life history variables. Ecological Entomology, 1997, 22, 453-461.	1.1	60
190	Interspecific abundance-range size relationships: range position and phylogeny. Ecography, 1997, 20, 390-399.	2.1	56
191	Abundance-range size relationships in British birds: is unexplained variation a product of life history?. Ecography, 1997, 20, 466-474.	2.1	39
192	Abundance-range size relationships of breeding and wintering birds in Britain: a comparative analysis. Ecography, 1997, 20, 569-579.	2.1	43
193	Age, area and avian diversification. Biological Journal of the Linnean Society, 1997, 62, 239-253.	0.7	39
194	The relationship between geographic area and the latitudinal gradient in species richness in New World birds. Evolutionary Ecology, 1997, 11, 195-204.	0.5	41
195	Evolutionary age and risk of extinction in the global avifauna. Evolutionary Ecology, 1997, 11, 557-565.	0.5	79
196	Field evidence that host selection by conopid parasitoids is related to host body size. Insectes Sociaux, 1996, 43, 227-233.	0.7	46
197	Conservation Implications of Georaphic Range Size-Body Size Relationships. Conservation Biology, 1996, 10, 638-646.	2.4	137
198	Rarity and Body Size: Importance of Generality. Conservation Biology, 1996, 10, 1295-1298.	2.4	14

#	Article	IF	CITATIONS
199	Spatial patterns in the species richness of birds in the New World. Ecography, 1996, 19, 369-376.	2.1	73
200	Foraging and courtship behaviour in males of the solitary bee <i>Anthophora plumipes</i> (Hymenoptera: Anthophoridae): thermal physiology and the roles of body size. Ecological Entomology, 1995, 20, 169-183.	1.1	35
201	The frequency distribution of bird body weights: aquatic and terrestrial species. Ibis, 1995, 137, 237-240.	1.0	20
202	Rarity and Body Size: Some Cautionary Remarks. Conservation Biology, 1995, 9, 210-213.	2.4	23
203	Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution, 1994, 9, 471-474.	4.2	223
204	Relationships between abundance and body size: where do tourists fit?. Ecological Entomology, 1993, 18, 310-314.	1.1	30
205	Temporal dynamics of body size of beetles on oaks: a cautionary tale. Ecological Entomology, 1993, 18, 399-401.	1.1	5
206	Brood guarding in a bethylid wasp. Ecological Entomology, 1991, 16, 55-62.	1.1	92
207	Application of the Socio-Economic Impact Classification for Alien Taxa (SEICAT) to a global assessment of alien bird impacts. NeoBiota, 0, 62, 123-142.	1.0	14
208	Improving the Environmental Impact Classification for Alien Taxa (EICAT): a summary of revisions to the framework and guidelines. NeoBiota, 0, 62, 547-567.	1.0	26