Ying Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7253525/publications.pdf

Version: 2024-02-01

		94381	3	38368
95	9,307	37		95
papers	citations	h-index		g-index
			Ī	
97	97	97		10854
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Ordered Mesoporous Black TiO ₂ as Highly Efficient Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2014, 136, 9280-9283.	6.6	878
2	Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2012, 2, 4498.	1.7	696
3	Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 2508-2515.	6.6	685
4	Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy, 2018, 44, 353-363.	8.2	516
5	Anionâ€Modulated HER and OER Activities of 3D Ni–Vâ€Based Interstitial Compound Heterojunctions for Highâ€Efficiency and Stable Overall Water Splitting. Advanced Materials, 2019, 31, e1901174.	11.1	479
6	Recent advances of Li $<$ sub $>4sub>Ti<sub>5sub>O<sub>12sub> as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5750-5777.$	5.2	464
7	Holey Reduced Graphene Oxide Coupled with an Mo ₂ N–Mo ₂ C Heterojunction for Efficient Hydrogen Evolution. Advanced Materials, 2018, 30, 1704156.	11.1	459
8	Co Nanoislands Rooted on Co–N–C Nanosheets as Efficient Oxygen Electrocatalyst for Zn–Air Batteries. Advanced Materials, 2019, 31, e1901666.	11.1	455
9	Interfacial Engineering of MoO ₂ â€FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation. Advanced Materials, 2020, 32, e2000455.	11.1	401
10	Operando Cooperated Catalytic Mechanism of Atomically Dispersed Cuâ^'N ₄ and Znâ^'N ₄ for Promoting Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 14005-14012.	7.2	312
11	Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Science Bulletin, 2020, 65, 546-556.	4.3	292
12	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. Angewandte Chemie - International Edition, 2021, 60, 4815-4822.	7.2	233
13	Twoâ€Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 6673-6681.	7.2	227
14	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 4154-4160.	7.2	221
15	Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. Journal of Power Sources, 2013, 222, 448-454.	4.0	199
16	Highly Water-Stable Dye@Ln-MOFs for Sensitive and Selective Detection toward Antibiotics in Water. ACS Applied Materials & Detection toward Antibiotics in Water.	4.0	159
17	Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 21255-21260.	5. 2	151
18	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	5.2	125

#	Article	IF	CITATIONS
19	Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. Journal of Power Sources, 2018, 399, 26-41.	4.0	125
20	Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Research, 2014, 7, 731-742.	5.8	102
21	Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy, 2018, 54, 227-237.	8.2	96
22	Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method. Journal of the Electrochemical Society, 2011, 158, A266.	1.3	92
23	Ultrasmall FeNi ₃ N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 1083-1091.	5.2	89
24	Effective Electrocatalytic Hydrogen Evolution in Neutral Medium Based on 2D MoP/MoS ₂ Heterostructure Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 25986-25995.	4.0	86
25	Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 305-312.	5.2	85
26	Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy, 2020, 67, 104295.	8.2	83
27	Co-vacancy-rich Co1–x S nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Research, 2017, 10, 1819-1831.	5.8	78
28	Assembly of \hat{l}^2 -Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 951-957.	1. 5	72
29	Highâ€Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous Fe <i></i> P Coating Fe ₂ N Supported on Reduced Graphene Oxide. Small, 2018, 14, e1801717.	5.2	72
30	2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2021, 9, 8620-8629.	5.2	72
31	Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Research, 2014, 7, 1280-1290.	5.8	66
32	N-Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn–air battery. Journal of Materials Chemistry A, 2020, 8, 21189-21198.	5.2	63
33	Holey graphene modified LiFePO4 hollow microsphere as an efficient binary sulfur host for high-performance lithium-sulfur batteries. Energy Storage Materials, 2020, 26, 433-442.	9.5	49
34	Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nature Communications, 2022, 13, .	5.8	48
35	Li1.2Mn0.54Ni0.13Co0.13O2 hollow hierarchical microspheres with enhanced electrochemical performances as cathode material for lithium-ion battery application. Electrochimica Acta, 2017, 237, 217-226.	2.6	41
36	MOF-derived hollow SiO _x nanoparticles wrapped in 3D porous nitrogen-doped graphene aerogel and their superior performance as the anode for lithium-ion batteries. Nanoscale, 2020, 12, 13017-13027.	2.8	40

#	Article	IF	CITATIONS
37	Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells. Nano Research, 2016, 9, 2862-2874.	5.8	38
38	Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy, 2019, 66, 104100.	8.2	38
39	High-performance x Li 2 MnO 3 ·(1- x)LiMn 1/3 Co 1/3 Ni 1/3 O 2 (0.1 ⿤ â¿0.5) as Cathode Material for Lithium-ion Battery. Electrochimica Acta, 2016, 188, 686-695.	2.6	37
40	Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Science China Materials, 2020, 63, 2314-2324.	3.5	36
41	MoS ₂ -Coated Ni ₃ S ₂ Nanorods with Exposed {110} High-Index Facets As Excellent CO-Tolerant Cocatalysts for Pt: Ultradurable Catalytic Activity for Methanol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 11101-11109.	3.2	35
42	ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution. Scientific Reports, 2015, 5, 8858.	1.6	34
43	Mg-doped Li1.2Mn0.54Ni0.13Co0.13O2 nano flakes with improved electrochemical performance for lithium-ion battery application. Journal of Alloys and Compounds, 2018, 739, 607-615.	2.8	34
44	A 2D/2D/2D Ti ₃ C ₂ T _{<i>x</i>} @TiO ₂ @MoS ₂ heterostructure as an ultrafast and high-sensitivity NO ₂ gas sensor at room-temperature. Journal of Materials Chemistry A, 2022, 10, 11980-11989.	5.2	34
45	Structure and electrochemical properties of Sc3+-doped Li4Ti5O12 as anode materials for lithium-ion battery. Ceramics International, 2015, 41, 7073-7079.	2.3	33
46	Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Science China Materials, 2015, 58, 363-369.	3.5	31
47	Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Science China Materials, 2017, 60, 427-437.	3.5	30
48	Uncovering the underlying science behind dimensionality in the potassium battery regime. Energy Storage Materials, 2020, 25, 416-425.	9.5	30
49	Large-scale synthesis of stable mesoporous black TiO ₂ nanosheets for efficient solar-driven photocatalytic hydrogen evolution via an earth-abundant low-cost biotemplate. RSC Advances, 2016, 6, 50506-50512.	1.7	29
50	Monodispersed Nickel Phosphide Nanocrystals in Situ Grown on Reduced Graphene Oxide with Controllable Size and Composition as a Counter Electrode for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 5920-5926.	3.2	27
51	Engineering the Work Function of Buckled Boron α-Sheet by Lithium Adsorption: A First-Principles Investigation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19690-19701.	4.0	26
52	Twoâ€Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 6747-6755.	1.6	25
53	Morphology control and its effect on the electrochemical performance of Na2Li2Ti6O14 anode materials for lithium ion battery application. Electrochimica Acta, 2018, 259, 855-864.	2.6	24
54	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie, 2020, 132, 4183-4189.	1.6	23

#	Article	IF	Citations
55	Atomically Dispersed Fe–N ₃ C Sites Induce Asymmetric Electron Structures to Afford Superior Oxygen Reduction Activity. Small, 2022, 18, e2201255.	5.2	23
56	Operando Cooperated Catalytic Mechanism of Atomically Dispersed Cuâ^'N 4 and Znâ^'N 4 for Promoting Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 14124-14131.	1.6	22
57	In situ growth of Co9S8 nanocrystals on reduced graphene oxide for the enhanced catalytic performance of dye-sensitized solar cell. Journal of Alloys and Compounds, 2019, 803, 216-223.	2.8	21
58	A "competitive occupancy―strategy toward Co–N ₄ single-atom catalysts embedded in 2D TiN/rGO sheets for highly efficient and stable aromatic nitroreduction. Journal of Materials Chemistry A, 2020, 8, 4807-4815.	5.2	19
59	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. Angewandte Chemie, 2021, 133, 4865-4872.	1.6	19
60	Surface defects induced charge imbalance for boosting charge separation and solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 596, 12-21.	5.0	19
61	Strongly Quantum-Confined Perovskite Nanowire Arrays for Color-Tunable Blue-Light-Emitting Diodes. ACS Nano, 2022, 16, 8388-8398.	7.3	19
62	First-principles study on negative thermal expansion of PbTiO3. Applied Physics Letters, 2013, 103, .	1.5	17
63	Hollow and hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 micro-cubes as promising cathode materials for lithium ion battery. Journal of Alloys and Compounds, 2019, 807, 151686.	2.8	15
64	Surface domain heterojunction on rutile TiO ₂ for highly efficient photocatalytic hydrogen evolution. Nanoscale Horizons, 2020, 5, 1596-1602.	4.1	15
65	The Fe ₃ C–N _{<i>x</i>} Site Assists the Fe–N _{<i>x</i>} Site to Promote Activity of the Fe–N–C Electrocatalyst for Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 3346-3354.	3.2	15
66	Fabrication of noncovalently functionalized brick-like \hat{l}^2 -cyclodextrins/graphene composite dispersions with favorable stability. RSC Advances, 2014, 4, 2813-2819.	1.7	14
67	Polydopamine/defective ultrathin mesoporous graphitic carbon nitride nanosheets as Z-scheme organic assembly for robust photothermal-photocatalytic performance. Journal of Colloid and Interface Science, 2022, 613, 775-785.	5.0	14
68	Novel \hat{l}_{\pm} - and \hat{l}^2 -type boron sheets: Theoretical insight into their structures, thermodynamic stability, and work functions. Chemical Physics Letters, 2016, 648, 81-86.	1.2	12
69	Porous Palladium Nanomeshes with Enhanced Electrochemical CO ₂ â€intoâ€Syngas Conversion over a Wider Applied Potential. ChemSusChem, 2019, 12, 3304-3311.	3.6	12
70	Li2ZnTi3O8@α-Fe2O3 composite anode material for Li-ion batteries. Ceramics International, 2021, 47, 18732-18742.	2.3	12
71	Integration of heterointerface and porosity engineering to achieve efficient hydrogen evolution of 2D porous NiMoN nanobelts coupled with Ni particles. Electrochimica Acta, 2022, 403, 139702.	2.6	12
72	Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics, 2019, 25, 4567-4576.	1.2	11

#	Article	IF	CITATIONS
73	Imparting \hat{l}_{\pm} -Borophene with High Work Function by Fluorine Adsorption: A First-Principles Investigation. Langmuir, 2021, 37, 11027-11040.	1.6	10
74	Coreâ€"Shell NiO@Niâ€P Hybrid Nanosheet Array for Synergistically Enhanced Oxygen Evolution Electrocatalysis: Experimental and Theoretical Insights. Chemistry - an Asian Journal, 2018, 13, 944-949.	1.7	9
75	Effect of cation doping on the electrochemical properties of Li2MoO3 as a promising cathode material for lithium-ion battery. Ionics, 2020, 26, 4413-4422.	1.2	9
76	Structures, stabilities and work functions of alkali-metal-adsorbed boron $\hat{l}\pm 1$ -sheets. Chemical Research in Chinese Universities, 2017, 33, 631-637.	1.3	8
77	Enhanced field-emission properties of buckled $\hat{l}\pm$ -borophene by means of Li decoration: a first-principles investigation. Physical Chemistry Chemical Physics, 2018, 20, 15139-15148.	1.3	8
78	Highly Effective Work Function Reduction of αâ€Borophene via Caesium Decoration: A Firstâ€Principles Investigation. Advanced Theory and Simulations, 2020, 3, 1900249.	1.3	8
79	Improving the structural stability and electrochemical performance of Na ₂ Li ₂ Ti ₆ O ₁₄ nanoparticles <i>via</i> MgF ₂ coating. RSC Advances, 2019, 9, 15763-15771.	1.7	7
80	SrLi2Ti6O14@AlF3 composite as high performance anode materials for lithium ion battery application. Electrochimica Acta, 2020, 329, 135139.	2.6	7
81	Unveiling the role of Ti substitution in improving safety of high voltage LiNi0.5Mn1.5-Ti O4 cathode material by ameliorating Structure-stability and enhancing Elevated-temperature properties. Applied Surface Science, 2022, 599, 153886.	3.1	7
82	Improving the stability, lithium diffusion dynamics, and specific capacity of SrLi2Ti6O14 via ZrO2 coating. Green Energy and Environment, 2022, 7, 53-65.	4.7	6
83	Li2MoO3 microspheres with excellent electrochemical performances as cathode material for lithium-ion battery. Ionics, 2020, 26, 4401-4411.	1.2	6
84	Effect of F Dopant on the Structural Stability, Redox Mechanism, and Electrochemical Performance of Li 2 MoO 3 Cathode Materials. Advanced Sustainable Systems, 2020, 4, 2000104.	2.7	5
85	Modulating the bonding properties of Li2MoO3 via non-equivalent cationic doping to enhance its stability and electrochemical performance for lithium-ion battery application. Ceramics International, 2021, 47, 18304-18313.	2.3	5
86	Effect of Li Adsorption on Work Function Modulation of Bilayer $\langle i \rangle \hat{l} \pm \langle j \rangle$ -Borophene: A Theoretical Study. Acta Chimica Sinica, 2020, 78, 344.	0.5	5
87	Cobalt nanoparticles decorated on nitrogen-doped graphene as excellent electromagnetic wave absorbent in Ku-band. Journal of Materials Science: Materials in Electronics, 2020, 31, 12044-12055.	1.1	4
88	Effects of adatom species on the structure, stability, and work function of adatom-α-borophene nanocomposites. Physical Chemistry Chemical Physics, 2022, 24, 8923-8939.	1.3	4
89	Li-S Batteries: Ultrathin MXene Nanosheets Decorated with TiO2 Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li-S Batteries (Small 41/2018). Small, 2018, 14, 1870190.	5.2	3
90	Facile in-situ fabrication of nanocoral-like bimetallic Co-Mo carbide/nitrogen-doped carbon: a highly active and stable electrocatalyst for hydrogen evolution. Journal of Materials Science, 2021, 56, 11894-11906.	1.7	3

#	Article	IF	CITATIONS
91	High-performance Li-ion battery driven by a hybrid Li storage mechanism in a three-dimensional architectured ZnTiO ₃ –CeO ₂ microsphere anode. Dalton Transactions, 2021, 51, 168-178.	1.6	3
92	Monodisperse MnO nanoparticles in situ grown on reduced graphene oxide via hydrophobic interaction for excellent electromagnetic wave absorption. Journal of Materials Research, 2022, 37, 2175-2184.	1.2	3
93	Effects of Ru doping on the structural stability and electrochemical properties of Li ₂ MoO ₃ cathode materials for Li-ion batteries. Dalton Transactions, 2022, 51, 8786-8794.	1.6	3
94	Innenrücktitelbild: Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation (Angew. Chem. 9/2021). Angewandte Chemie, 2021, 133, 5003-5003.	1.6	1
95	Monodispersed copper phosphide nanocrystals <i>in situ</i> grown in a nitrogen-doped reduced graphene oxide matrix and their superior performance as the anode for lithium-ion batteries. Inorganic Chemistry Frontiers, 0, , .	3.0	1