Aziz Moukrim

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7253311/publications.pdf
Version: 2024-02-01

3 The student scheduling problem at UniversitÃ＠de Technologie de CompiÃ̈gne．Expert Systems With Applications，2021，175， 114735.
$4.4 \quad 1$

Polynomial algorithms for some scheduling problems with one nonrenewable resource．RAIRO－ Operations Research，2021，55，3493－3511．

6 A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing
11 Solving the team orienteering problem with cutting planes．Computers and Operations Research，2016，
74，21－30．
$2.4 \quad 45$

12 An adaptive heuristic for the Capacitated Team Orienteering Problem．IFAC－PapersOnLine，2016，49，
$0.5 \quad 4$ 1662－1666．

14 Heuristic solutions for the vehicle routing problem with time windows and synchronized visits． Optimization Letters，2016，10，511－525．

```
19 Branch and price with constraint propagation for Resource Constrained Project Scheduling Problem.
, 2014, ,.
```

20 A branch and bound algorithm for the two-machine flowshop problem with unit-time operations and time delays. RAIRO - Operations Research, 2014, 48, 235-254.
$1.0 \quad 9$
New Lower Bounds on the Number of Vehicles for the Vehicle Routing Problem with Time Windows.
Lecture Notes in Computer Science, 2014, , 422-437.
22 Memetic Algorithm with an Efficient Split Procedure for the Team Orienteering Problem with Time
Windows. Lecture Notes in Computer Science, 2014, , 183-194.
$1.0 \quad 2$ Windows. Lecture Notes in Computer Science, 2014, , 183-194.
$1.0 \quad 2$
A Memetic Algorithm for staff scheduling problem in airport security service. Expert Systems With
Applications, 2013, 40, 7504-7512. Applications, 2013, 40, 7504-7512.
$4.4 \quad 42$

24 An effective PSO-inspired algorithm for the team orienteering problem. European Journal of Operational Research, 2013, 229, 332-344.
$3.5 \quad 98$
25 A Simulated Annealing Algorithm for the Vehicle Routing Problem with Time Windows and
Synchronization Constraints. Lecture Notes in Computer Science, 2013, , 259-265.
$1.0 \quad 24$
26

A Branch-and-Cut Algorithm for Solving the Team Orienteering Problem. Lecture Notes in Computer Science, 2013, , 332-339.
$1.0 \quad 27$

```
27 A New Graph-Theoretical Model for the Guillotine-Cutting Problem. INFORMS Journal on Computing,
27 2013, 25, 72-86.
```

1.06

28 Staff scheduling in airport security service. IFAC Postprint Volumes IPPV / International Federation of
Automatic Control, 2012, 45, 1413-1418.
0.45
Subgraph extraction and metaheuristics for the maximum clique problem. Journal of Heuristics, 2012,
$18,767-794$.
$1.1 \quad 9$

30 Exact methods for the robotic cell problem. Flexible Services and Manufacturing Journal, 2011, 23, 242-261.
$1.9 \quad 8$

A PSO-Based Memetic Algorithm for the Team Orienteering Problem. Lecture Notes in Computer	1.0
Science, 2011, 471-480.	

32 An optimization-based heuristic for the robotic cell problem. European Journal of Operational
3.5

38
Research, 2010, 202, 636-645.

Lower Bounds for the Minimal Sum Coloring Problem. Electronic Notes in Discrete Mathematics, 2010,
0.4

18
36, 663-670.

34 A memetic algorithm for the team orienteering problem. 4or, 2010, 8, 49-70.
1.0

82
$1.0-82$
35 Exact resolution of the one-machine sequencing problem with no machine idle time. Computers and
Industrial Engineering, 2010, 59, 193-199.
3.4

37 | New data-dependent dual-feasible functions and lower bounds for a two-dimensional bin-packing |
| :--- |
| problem. International Journal of Production Research, 2009, 47, 537-560. |
| A polynomial algorithm for recognizing the <mml:math |
| xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si3.gif" display="inline" |
| overflow="scroll">mml:msubmml:mrow<mml:mi |
| mathvariant="script">A</mml:mi></mml:mrow>mml:mrowmml:mim</mml:mi></mml:mrow></mml:msub></mml:math>-order |
| class. Discrete Mathematics, 2009, 309, 4200-4204. |

40 An MILP for scheduling problems in an FMS with one vehicle. European Journal of Operational

A new constraint programming approach for the orthogonal packing problem. Computers and
A new constraint programming approach for
Operations Research, 2008, 35, 944-959.
$2.4 \quad 67$

New resolution algorithm and pretreatments for the two-dimensional bin-packing problem.
Computers and Operations Research, 2008, 35, 3184-3201.
$2.4 \quad 24$

43 A new combinatorial approach for coordinating aerial conflicts given uncertainties regarding
aircraft speeds. International Journal of Production Economics, 2008, 112, 226-235.
$5.1 \quad 6$

44 A Memetic Algorithm for the Team Orienteering Problem. Lecture Notes in Computer Science, 2008, , 649-658.
1.0

45 A New Graph-Theoretical Model for k-Dimensional Guillotine-Cutting Problems. , 2008, , 43-54.
2

New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed
46 orientation. Computers and Operations Research, 2007, 34, 2223-2250.
2.4

63

$$
\begin{aligned}
& 47 \text { A new exact method for the two-dimensional orthogonal packing problem. European Journal of } \\
& \text { Operational Research, 2007,183,1196-1211. }
\end{aligned}
$$

$3.5 \quad 64$

A new exact method for the two-dimensional bin-packing problem with fixed orientation. Operations
Research Letters, 2007, 35, 357-364.
0.5

18

Hybrid Evolutionary Algorithm With Insertion Heuristics For The Flexible Job Shop Problem. , 2006, , .
2

50 An exact method for graph coloring. Computers and Operations Research, 2006, 33, 2189-2207.
2.4

21

> Optimal preemptive scheduling on a fixed number of identical parallel machines. Operations Research
> Letters, $2005,33,143-150$.
$0.5 \quad 12$

The Coffman--Graham Algorithm Optimally Solves UET Task Systems with Overinterval Orders. SIAM

Sensitivity analysis of tree scheduling on two machines with communication delays. Parallel

56 Scheduling unitary task systems with zeroâ€"one communication delays for quasi-interval orders. Discrete Applied Mathematics, 2003, 127, 461-476.

59	Non-preemptive Profile Scheduling and Quasi Interval Orders. Electronic Notes in Discrete Mathematics, 1999, 3, 133-139.	0.4
60	Optimal scheduling on parallel machines for a new order class. Operations Research Letters, 1999, 24, 91-95.	0.5
61	Scheduling with Communication Delays and On-Line Disturbances. Lecture Notes in Computer Science, 1999, , 350-357.	1.0
62	Scheduling with communication delays and data routing in message passing architectures. Lecture Notes in Computer Science, 1998, , 438-451.	1.0

