## Aziz Moukrim

## List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7253311/publications.pdf
Version: 2024-02-01


1 An effective PSO－inspired algorithm for the team orienteering problem．European Journal of
Operational Research，2013，229，332－344．

A memetic algorithm for the team orienteering problem．4or，2010，8，49－70．
1.0

An MILP for scheduling problems in an FMS with one vehicle．European Journal of Operational
Research，2009，199，706－722．

Heuristic solutions for the vehicle routing problem with time windows and synchronized visits．
Optimization Letters，2016，10，511－525．

A new constraint programming approach for the orthogonal packing problem．Computers and
Operations Research，2008，35，944－959．

A new exact method for the two－dimensional orthogonal packing problem．European Journal of Operational Research，2007，183，1196－1211．
3.5

New reduction procedures and lower bounds for the two－dimensional bin packing problem with fixed
7 New reduction procedures and lower bounds forsh，2007，34，2223－2250．
2.4

63

8 Solving the team orienteering problem with cutting planes．Computers and Operations Research，2016，
74，21－30．
2.4

45

Simultaneous job input sequencing and vehicle dispatching in a single－vehicle automated guided
$9 \quad$ vehicle system：a heuristic branch－and－bound approach coupled with a discrete events simulation model．International Journal of Production Research，2005，43，1911－1942．

A Memetic Algorithm for staff scheduling problem in airport security service．Expert Systems With Applications，2013，40，7504－7512．

11 An optimization－based heuristic for the robotic cell problem．European Journal of Operational
Research，2010，202，636－645．

Heuristic and metaheuristic methods for computing graph treewidth．RAIRO－Operations Research，
2004，38，13－26．

A Branch－and－Cut Algorithm for Solving the Team Orienteering Problem．Lecture Notes in Computer
Science，2013，，332－339．

An effective branch－and－price algorithm for the Preemptive Resource Constrained Project Scheduling
14 Problem based on minimal Interval Order Enumeration．European Journal of Operational Research，
2015，244，360－368．

15 New Lower and Upper Bounds for Graph Treewidth．Lecture Notes in Computer Science，2003，，70－80．
1.0

25

New resolution algorithm and pretreatments for the two－dimensional bin－packing problem． Computers and Operations Research，2008，35，3184－3201．
2.4

24

Synchronization Constraints．Lecture Notes in Computer Science，2013，，259－265．
1.0

24

The project scheduling problem with production and consumption of resources: A list-scheduling
based algorithm. Discrete Applied Mathematics, 2009, 157, 3631-3642.
20 A PSO-Based Memetic Algorithm for the Team Orienteering Problem. Lecture Notes in Computer Science, 2011, , 471-480.

A new exact method for the two-dimensional bin-packing problem with fixed orientation. Operations
Research Letters, 2007, 35, 357-364.

Lower Bounds for the Minimal Sum Coloring Problem. Electronic Notes in Discrete Mathematics, 2010,
36, 663-670.

Exact resolution of the one-machine sequencing problem with no machine idle time. Computers and Industrial Engineering, 2010, 59, 193-199.

Sensitivity analysis of tree scheduling on two machines with communication delays. Parallel
Computing, 2004, 30, 103-120.

A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing
problem with profit. Annals of Operations Research, 2020, 291, 281-316.

The clustered team orienteering problem. Computers and Operations Research, 2019, 111, 386-399.
2.4

13

Optimal scheduling on parallel machines for a new order class. Operations Research Letters, 1999, 24,
91-95.

Optimal preemptive scheduling on a fixed number of identical parallel machines. Operations Research

30 Effective neighborhood search with optimal splitting and adaptive memory for the team orienteering problem with time windows. Computers and Operations Research, 2020, 123, 105039.

31 Exact Method for Robotic Cell Problem. Electronic Notes in Discrete Mathematics, 2010, 36, 859-866.
0.4

9
$1.1 \quad 12$
2.4

10

32 Subgraph extraction and metaheuristics for the maximum clique problem. Journal of Heuristics, 2012, 18, 767-794.
1.1

9

A branch and bound algorithm for the two-machine flowshop problem with unit-time operations and
time delays. RAIRO - Operations Research, 2014, 48, 235-254.
$1.0 \quad 9$

Exact methods for the robotic cell problem. Flexible Services and Manufacturing Journal, 2011, 23,
242-261.
1.9

8

Preprocessing and an improved MIP model for examination timetabling. Annals of Operations
Research, 2015, 229, 19-40.
2.6

Parallel Machine Scheduling with Uncertain Communication Delays. RAIRO - Operations Research,
2003, 37, 1-16.

| 39 | The Coffman--Graham Algorithm Optimally Solves UET Task Systems with Overinterval Orders. SIAM Journal on Discrete Mathematics, 2005, 19, 109-121. | 0.4 | 6 |
| :---: | :---: | :---: | :---: |
| 40 | A new combinatorial approach for coordinating aerial conflicts given uncertainties regarding aircraft speeds. International Journal of Production Economics, 2008, 112, 226-235. | 5.1 | 6 |
| 41 | New data-dependent dual-feasible functions and lower bounds for a two-dimensional bin-packing problem. International Journal of Production Research, 2009, 47, 537-560. | 4.9 | 6 |
| 42 | A New Graph-Theoretical Model for the Guillotine-Cutting Problem. INFORMS Journal on Computing, 2013, 25, 72-86. | 1.0 | 6 |
| 43 | Staff scheduling in airport security service. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1413-1418. | 0.4 | 5 |

44 Introduction to Flexibility and Robustness in Scheduling., 0, , 15-33.
45 An adaptive heuristic for the Capacitated Team Orienteering Problem. IFAC-PapersOnLine, 2016, 49, 1662-1666.
47 Scheduling unitary task systems with zeroâ $E^{\prime \prime}$ one communication delays for quasi-interval orders. Discrete Applied Mathematics, 2003, 127, 461-476.
0.5 ..... 3
A Memetic Algorithm for the Team Orienteering Problem. Lecture Notes in Computer Science, 2008, ,

$1.0 \quad 3$
1.0 ..... 3
649-658.
649-658. ..... 48
49 A matheuristic for exam timetabling. IFAC-PapersOnLine, 2016, 49, 1289-1294.0.53
50 Hybrid Evolutionary Algorithm With Insertion Heuristics For The Flexible Job Shop Problem. , 2006, , . ..... 2
51 Exact method for the two-machine flow-shop problem with time delays. Annals of Operations ..... 2.6
Research, 2021, 298, 375-406. ..... 2

56 GRASPâ€łLS and set cover hybrid heuristic for the synchronized team orienteering problem with time windows. International Transactions in Operational Research, 2023, 30, 946-969.

| 59 | Hybrid Heuristic for the Clustered Orienteering Problem. Lecture Notes in Computer Science, 2017, , 19-33. | 1.0 | 1 |
| :---: | :---: | :---: | :---: |
| 60 | Non-preemptive Profile Scheduling and Quasi Interval Orders. Electronic Notes in Discrete Mathematics, 1999, 3, 133-139. | 0.4 | 0 |
| 61 | A polynomal algorithm for recognizing the <mmimatn <br> xmlns:mml="http:\||www.w3.org/1998/Math/MathML" altimg="si3.gif" display="inline" <br> overflow="scroll"> [mml:msub](mml:msub) [mml:mrow](mml:mrow) <mml:mi <br>  | $\begin{array}{r} 0.4 \\ \text { Imm } \end{array}$ | $\begin{aligned} & 0 \\ & 1>\text {-order } \end{aligned}$ |
| 62 | Branch and price with constraint propagation for Resource Constrained Project Scheduling Problem. , 2014, , . |  | 0 |
| 63 | Polynomial algorithms for some scheduling problems with one nonrenewable resource. RAIRO Operations Research, 2021, 55, 3493-3511. | 1.0 | 0 |

[^0]
[^0]:    Project Scheduling with Production and Consumption of Resources: How to Build Schedules. , 0, , 161-170.

