Cristiano José de Andrade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7253256/publications.pdf

Version: 2024-02-01

567281 526287 34 776 15 27 g-index citations h-index papers 35 35 35 914 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. MOJ Food Processing & Technology, 2018, 6, .	0.9	139
2	Mannosylerythritol lipids: antimicrobial and biomedical properties. Applied Microbiology and Biotechnology, 2020, 104, 2297-2318.	3 . 6	64
3	A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Separation and Purification Technology, 2017, 180, 157-167.	7.9	63
4	New sustainable alternatives to reduce the production costs for surfactin 50Âyears after the discovery. Applied Microbiology and Biotechnology, 2019, 103, 8647-8656.	3 . 6	42
5	Optimizing alternative substrate for simultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a. Biocatalysis and Agricultural Biotechnology, 2016, 6, 209-218.	3.1	38
6	Kappaphycus alvarezii macroalgae: An unexplored and valuable biomass for green biorefinery conversion. Trends in Food Science and Technology, 2020, 103, 214-224.	15.1	37
7	An overview on the application of genusÂChlorellaÂin biotechnological processes. Journal of Advanced Research in Biotechnology, 2017, 2, 1-9.	0.4	35
8	Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of <i>Bacillus subtilis</i> Biotechnology Research International, 2013, 2013, 1-9.	1.4	34
9	Persimmon (<i>Diospyros Kaki</i> L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products – A Review. Food Reviews International, 2022, 38, 384-401.	8.4	33
10	Ultrafiltration based purification strategies for surfactin produced by <i>Bacillus subtilis</i> <scp>LB5A</scp> using cassava wastewater as substrate. Journal of Chemical Technology and Biotechnology, 2016, 91, 3018-3027.	3.2	24
11	Biosurfactant inducers for enhanced production of surfactin and rhamnolipids: an overview. World Journal of Microbiology and Biotechnology, 2021, 37, 21.	3.6	24
12	Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: An integrated process. Biocatalysis and Agricultural Biotechnology, 2015, 4, 535-542.	3.1	23
13	Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, 2019, 144, 104368.	4.1	23
14	Production of prebiotic galactooligosaccharides from lactose by Pseudozyma tsukubaensis and Pichia kluyveri. Biocatalysis and Agricultural Biotechnology, 2014, 3, 343-350.	3.1	18
15	Fruits and vegetable-processing waste: a case study in two markets at Rio de Janeiro, RJ, Brazil. Environmental Science and Pollution Research, 2020, 27, 18530-18540.	5. 3	17
16	Biodegradation of azo dye-containing wastewater by activated sludge: a critical review. World Journal of Microbiology and Biotechnology, 2021, 37, 101.	3 . 6	17
17	Amino acids, fatty acids, and peptides in microalgae biomass harvested from phycoremediation of swine wastewaters. Biomass Conversion and Biorefinery, 2022, 12, 869-880.	4.6	16
18	A prospection on membrane-based strategies for downstream processing of surfactin. Chemical Engineering Journal, 2021, 415, 129067.	12.7	16

#	Article	IF	Citations
19	Microalgae for bioremediation of textile wastewater: An overview. MOJ Food Processing $\&$ Technology, 2018, 6, .	0.9	16
20	Perspective on integrated biorefinery for valorization of biomass from the edible insect Tenebrio molitor. Trends in Food Science and Technology, 2021, 116, 480-491.	15.1	14
21	Enhanced textile wastewater treatment by a novel biofilm carrier with adsorbed nutrients. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101527.	3.1	13
22	Application of Immobilized Laccase on Polyurethane Foam for Ex-Situ Polycyclic Aromatic Hydrocarbons Bioremediation. Journal of Polymers and the Environment, 2021, 29, 2200-2213.	5.0	13
23	Chlorella vulgaris phycoremediation at low Cu+2 contents: Proteomic profiling of microalgal metabolism related to fatty acids and CO2 fixation. Chemosphere, 2021, 284, 131272.	8.2	12
24	Microbial Peptidase in Food Processing: Current State of the Art and Future Trends. Catalysis Letters, 2023, 153, 114-137.	2.6	9
25	Comparative study: bench-scale surfactin production from bacillus subtilis using analytical grade and concentrated glycerol from the biodiesel industry. International Journal of Scientific World, 2016, 5, 28-37.	3.0	7
26	Apoptosis Induction in Murine Melanoma (B16F10) Cells by Mannosylerythritol Lipids-B; a Glycolipid Biosurfactant with Antitumoral Activities. Applied Biochemistry and Biotechnology, 2021, 193, 3855-3866.	2.9	7
27	Biological activity of mannosylerythritol lipids on the mammalian cells. Applied Microbiology and Biotechnology, 2020, 104, 8595-8605.	3.6	5
28	Mannosylerythritol lipids as green pesticides and plant biostimulants. Journal of the Science of Food and Agriculture, 2023, 103, 37-47.	3.5	5
29	Valorization of Agri-Food Wastes. Environmental and Microbial Biotechnology, 2021, , 111-132.	0.7	3
30	Nanoformulations Based on Bacillus subtilis Lipopeptides: The Future of Agriculture., 2019,, 75-88.		3
31	Phycoremediation of Copper by Chlorella protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response. Biomass, 2022, 2, 116-129.	2.8	3
32	Comparative study on microbial enhanced oil recovery using mannosylerithritol lipids and surfactin. International Journal of Scientific World, 2016, 4, 69-77.	3.0	2
33	Biosurfactants: A Green and Sustainable Remediation Alternative. , 2021, , 49-72.		0
34	Filmes biodegradáveis e agentes de reforço vegetais: Um enfoque em estudos brasileiros sob a ótica da economia circular. Research, Society and Development, 2021, 10, e49210918278.	0.1	0