
Thierry Darmanin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7252897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bioinspired approach to fabricate fluorescent nanotubes with strong water adhesion by soft template electropolymerization and post-grafting. Journal of Colloid and Interface Science, 2022, 606, 236-247.	9.4	4
2	Effect of Electrolyte Nature on Micellar Soft-Template Electropolymerization in Organic Solvent to Form Nanoporous Polymer Films with a Bioinspired Strategy. Journal of Bionic Engineering, 2022, 19, 547.	5.0	1
3	Resistant amphiphobic textile coating by plasma induced polymerization of a pyrrole derivative grafted to silica nanoparticles and short fluorinated alkyl chains. Materials Today Communications, 2022, 30, 103171.	1.9	5
4	Tunable Nanoporous Structures with Rose Petal Effect by Softâ€Template Electropolymerization of Benzotrithiophene Monomers. ChemistrySelect, 2022, 7, .	1.5	2
5	Formation of Nanotubular Structures with Petal Effect by Soft-Template Electropolymerization of Benzotrithiophene with Hydrophilic Carboxyl Group. Journal of Bionic Engineering, 2022, 19, 1054-1063.	5.0	1
6	Soft-template electropolymerization of 3,4-(2,3-naphtylenedioxy)thiophene-2-acetic acid esters favoring dimers: Controlling the surface nanostructure by side ester groups. Electrochimica Acta, 2022, 425, 140684.	5.2	3
7	A soft template approach to various porous nanostructures from conjugated carbazole-based monomers. Journal of Colloid and Interface Science, 2021, 584, 795-803.	9.4	11
8	Surface Nanostructure Control with Poly(ethylene glycol) (PEG) Spacer by Templateless Electropolymerization. Journal of Bionic Engineering, 2021, 18, 65-76.	5.0	0
9	Densely packed open microspheres by soft template electropolymerization of benzotrithiophene-based monomers. Electrochimica Acta, 2021, 369, 137677.	5.2	5
10	Micellar formation by soft template electropolymerization in organic solvents. Journal of Colloid and Interface Science, 2021, 590, 260-267.	9.4	19
11	Controlling water adhesion on superhydrophobic surfaces with bi-functional polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126307.	4.7	4
12	Highly conjugated carbazole-based monomers for the control of nanotubular surface structures by soft template electropolymerization. Pure and Applied Chemistry, 2021, .	1.9	1
13	Designing Tunable Omniphobic Surfaces by Controlling the Electropolymerization Sites of Carbazole $\hat{a} \in \mathbf{B}$ ased Monomers. Macromolecular Chemistry and Physics, 2021, 222, 2100262.	2.2	0
14	Nanotubular structures via templateless electropolymerization using thieno[3,4-b]thiophene monomers with various substituents and polar linkers. Progress in Organic Coatings, 2020, 138, 105382.	3.9	5
15	The influence of bath temperature on the one-step electrodeposition of non- wetting copper oxide coatings. Applied Surface Science, 2020, 503, 144094.	6.1	15
16	Tuning nanotubular structures by templateless electropolymerization with thieno[3,4-b]thiophene-based monomers with different substituents and water content. Journal of Colloid and Interface Science, 2020, 564, 19-27.	9.4	7
17	Influence of alkyl spacer in nanostructure shape control by templateless electropolymerization. Progress in Organic Coatings, 2020, 146, 105698.	3.9	3
18	Bioinspired surfaces with strong water adhesion from electrodeposited poly(thieno[3,4-b]thiophene) with various branched alkyl chains. Journal of Polymer Research, 2020, 27, 1.	2.4	1

#	Article	IF	CITATIONS
19	Influence of spacer in the formation of nanorings by templateless electropolymerization. Materials Today Chemistry, 2020, 17, 100278.	3.5	1
20	A bioinspired strategy for designing well-ordered nanotubular structures by templateless electropolymerization of thieno[3,4- <i>b</i>]thiophene-based monomers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190450.	3.4	7
21	Bioinspired surfaces with strong water adhesion by electropolymerization of thieno[3,4-b]thiophene with mixed hydrocarbon/short fluorocarbon chains. Journal of Fluorine Chemistry, 2020, 236, 109574.	1.7	1
22	Templateless Electrodeposition of Conducting Polymer Nanotubes on Mesh Substrates. Macromolecular Chemistry and Physics, 2020, 221, 1900529.	2.2	3
23	A bioinspired strategy for poly(3,4-ethylenedioxypyrrole) films with strong water adhesion. Pure and Applied Chemistry, 2020, 92, 315-322.	1.9	1
24	Designing bioinspired coral-like structures using a templateless electropolymerization approach with a high water content. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190123.	3.4	7
25	Designing Nanoporous Membranes through Templateless Electropolymerization of Thieno[3,4- <i>b</i>]thiophene Derivatives with High Water Content. ACS Omega, 2019, 4, 13080-13085.	3.5	19
26	Wetting Transition from Hydrophilic to Superhydrophobic over Dendrite Copper Leaves Grown on Steel Meshes. Journal of Bionic Engineering, 2019, 16, 719-729.	5.0	12
27	Templateless Electropolymerization for Controlled Growth of Polymeric Nanotubes on Micropatterned Surfaces. ChemNanoMat, 2019, 5, 1239-1243.	2.8	2
28	Dynamic Wetting Properties of Mesh Substrates with Tunable Water Adhesion. ChemPhysChem, 2019, 20, 1907-1907.	2.1	2
29	Nanotubular structures through templateless electropolymerization using thieno[3,4-b]thiophene derivatives with different substituents and water content. Electrochimica Acta, 2019, 320, 134594.	5.2	12
30	Exceptionally Strong Effect of Small Structural Variations in Functionalized 3,4-Phenylenedioxythiophenes on the Surface Nanostructure and Parahydrophobic Properties of Their Electropolymerized Films. Macromolecules, 2019, 52, 8088-8102.	4.8	17
31	Coral-like nanostructures. Materials Today, 2019, 31, 119-120.	14.2	18
32	Dynamic Wetting Properties of Mesh Substrates with Tunable Water Adhesion. ChemPhysChem, 2019, 20, 1918-1921.	2.1	1
33	Fabrication of Superhydrophobic Hierarchical Surfaces by Square Pulse Electrodeposition: Copperâ€Based Layers on Gold/Silicon (100) Substrates. ChemPlusChem, 2019, 84, 368-373.	2.8	11
34	Micro- and nanoscopic observations of sexual dimorphisms in Mecynorhina polyphemus confluens (Kraatz, 1890) (Coleoptera, Cetoniidae, Goliathini) and consequences for surface wettability. Arthropod Structure and Development, 2019, 49, 10-18.	1.4	4
35	Hybrid surfaces combining electropolymerization and lithography: fabrication and wetting properties. Soft Matter, 2019, 15, 9352-9358.	2.7	1
36	Designing bioinspired parahydrophobic surfaces by electrodeposition of poly(3,4-ethylenedioxypyrrole) and poly(3,4-propylenedioxypyrrole) with mixed hydrocarbon and fluorocarbon chains. European Polymer Journal, 2019, 110, 76-84.	5.4	5

#	Article	IF	CITATIONS
37	Superhydrophobic and fluorescent properties of fluorinated polypyrene surfaces using various polar linkers prepared via electropolymerization. Reactive and Functional Polymers, 2019, 135, 65-76.	4.1	11
38	Variations in surface structures and wettability in the genus <i>Pachnoda</i> Burmeister. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 181-189.	0.9	2
39	A Templateless Electropolymerization Approach to Porous Hydrophobic Nanostructures Using 3,4â€Phenylenedioxythiophene Monomers with Electronâ€Withdrawing Groups. ChemNanoMat, 2018, 4, 656-662.	2.8	14
40	Nanofoldâ€decorated surfaces from the electrodeposition of diâ€alkyl yclopentadithiophenes. Polymers for Advanced Technologies, 2018, 29, 1170-1181.	3.2	2
41	Major influence of the hydrophobic chain length in the formation of poly(3,4-propylenedioxypyrrole) (PProDOP) nanofibers with special wetting properties. Materials Today Chemistry, 2018, 7, 65-75.	3.5	6
42	Anti-bacterial and fluorescent properties of hydrophobic electrodeposited non-fluorinated polypyrenes. Applied Surface Science, 2018, 452, 352-363.	6.1	10
43	Nanocups and hollow microspheres formed by a one-step and templateless electropolymerization of thieno[3,4-b]thiophene derivatives as a function of the substituent. Electrochimica Acta, 2018, 269, 462-478.	5.2	17
44	Intrinsically water-repellent copper oxide surfaces; An electro-crystallization approach. Applied Surface Science, 2018, 443, 191-197.	6.1	15
45	A Templateless Electropolymerization Approach to Nanorings Using Substituted 3,4â€Naphthalenedioxythiophene (NaPhDOT) Monomers. ChemNanoMat, 2018, 4, 140-147.	2.8	11
46	Formation of Nanofibers with High Water Adhesion by Electrodeposition of Films of Poly(3,4-ethylenedioxypyrrole) and Poly(3,4-propylenedioxypyrrole) Substituted by Alkyl Chains. ChemPlusChem, 2018, 83, 957-957.	2.8	0
47	Parahydrophobic and Nanostructured Poly(3,4-ethylenedioxypyrrole) and Poly(3,4-propylenedioxypyrrole) Films with Hyperbranched Alkyl Chains. ACS Omega, 2018, 3, 12428-12436.	3.5	3
48	Experimental Characterization of Droplet Adhesion: The Ejection Test Method (ETM) Applied to Surfaces with Various Hydrophobicity. Journal of Physical Chemistry A, 2018, 122, 8693-8700.	2.5	8
49	Variation of Goliathus orientalis (Moser, 1909) Elytra Nanostructurations and Their Impact on Wettability. Biomimetics, 2018, 3, 6.	3.3	9
50	Switchable and Reversible Superhydrophobic Surfaces: Part Two. , 2018, , .		0
51	Formation of Nanofibers with High Water Adhesion by Electrodeposition of Films of Poly(3,4â€ethylenedioxypyrrole) and Poly(3,4â€propylenedioxypyrrole) Substituted by Alkyl Chains. ChemPlusChem, 2018, 83, 968-975.	2.8	3
52	Surface Nanostructuration and Wettability of Electrodeposited Poly(3,4-ethylenedioxypyrrole) and Poly(3,4-propylenedioxypyrrole) Films Substituted by Aromatic Groups. ACS Omega, 2018, 3, 8393-8400.	3.5	1
53	Superhydrophobic, superoleophobic and underwater superoleophobic conducting polymer films. Surface Innovations, 2018, 6, 181-204.	2.3	13
54	Superhydrophobic polypyrene films to prevent Staphylococcus aureus and Pseudomonas aeruginosa biofilm adhesion on surfaces: high efficiency deciphered by fluorescence microscopy. Photochemical and Photobiological Sciences, 2018, 17, 1023-1035.	2.9	10

#	Article	IF	CITATIONS
55	Rapid, Templateâ€Less Patterning of Polymeric Interfaces for Controlled Wettability via in Situ Heterogeneous Photopolymerizations. Macromolecular Chemistry and Physics, 2018, 219, 1800090.	2.2	1
56	Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Advances in Colloid and Interface Science, 2017, 241, 37-61.	14.7	81
57	One-pot Staudinger Ureation reaction to develop superhydrophobic/oleophobic surfaces with urea linkers. Materials and Design, 2017, 114, 116-122.	7.0	5
58	The major influence of the substrate nature on the formation of nanotubes with high water adhesion using a templateless electropolymerization process. Synthetic Metals, 2017, 224, 99-108.	3.9	3
59	Controlling the wettability of mesh substrates by post -functionalization using the Huisgen reaction. Materials Chemistry and Physics, 2017, 195, 67-73.	4.0	0
60	A travel in the Echeveria genus wettability's world. Applied Surface Science, 2017, 411, 291-302.	6.1	14
61	Superhydrophobic properties of electrodeposited fluorinated polypyrenes. Journal of Fluorine Chemistry, 2017, 193, 73-81.	1.7	16
62	The design of superhydrophobic stainless steel surfaces by controlling nanostructures: A key parameter to reduce the implantation of pathogenic bacteria. Materials Science and Engineering C, 2017, 73, 40-47.	7.3	80
63	Bioinspired Roseâ€Petalâ€Like Substrates Generated by Electropolymerization on Micropatterned Gold Substrates. ChemPlusChem, 2017, 82, 336-336.	2.8	0
64	Poly(3,4-propylenedioxypyrrole) Nanofibers with Branched Alkyl Chains by Electropolymerization to Obtain Sticky Surfaces with High Contact Angles. ChemistrySelect, 2017, 2, 9490-9494.	1.5	5
65	pHâ€Driven Wetting Switchability of Electrodeposited Superhydrophobic Copolymers of Pyrene Bearing Acid Functions and Fluorinated Chains. ChemPhysChem, 2017, 18, 3429-3436.	2.1	9
66	Superpropulsion of Droplets and Soft Elastic Solids. Physical Review Letters, 2017, 119, 108001.	7.8	25
67	Direct Electrodeposition of Superhydrophobic and Highly Oleophobic Poly(3,4â€ethylenedioxypyrrole) (PEDOP) and Poly(3,4â€propylenedioxypyrrole) (PProDOP) Nanofibers. ChemNanoMat, 2017, 3, 885-894.	2.8	14
68	Combining Staudinger Reductive Amination and Amidification for the Control of Surface Hydrophobicity and Water Adhesion by Introducing Heterobifunctional Groups: Post―and Anteâ€Approach. Macromolecular Chemistry and Physics, 2017, 218, 1700250.	2.2	2
69	Nanoparticles covered surfaces for post-functionalization with aromatic groups to obtain parahydrophobic surface with high water adhesion (petal effect). Journal of Bionic Engineering, 2017, 14, 468-475.	5.0	1
70	Electrodeposited Poly(thieno[3,2â€ <i>b</i>]thiophene) Films for the Templateless Formation of Porous Structures by Galvanostatic and Pulse Deposition. ChemPlusChem, 2017, 82, 1351-1358.	2.8	18
71	Macromol. Chem. Phys. 19/2017. Macromolecular Chemistry and Physics, 2017, 218, .	2.2	0
72	Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. Journal of Fluorine Chemistry, 2017, 200, 123-132.	1.7	18

#	Article	IF	CITATIONS
73	Superhydrophobic and superoleophobic poly(3,4-ethylenedioxypyrrole) polymers synthesized using the Staudinger-Vilarrasa reaction. Pure and Applied Chemistry, 2017, 89, 1751-1760.	1.9	2
74	Bioinspired Roseâ€Petalâ€Like Substrates Generated by Electropolymerization on Micropatterned Gold Substrates. ChemPlusChem, 2017, 82, 352-357.	2.8	9
75	Surfaces Bearing Fluorinated Nucleoperfluorolipids for Potential Anti-Graffiti Surface Properties. Coatings, 2017, 7, 220.	2.6	7
76	Bifunctionalized Monomers for Surfaces with Controlled Hydrophobicity. ChemPlusChem, 2017, 82, 1245-1252.	2.8	1
77	Staudinger-Vilarassa reaction versus Huisgen reaction for the control of surface hydrophobicity and water adhesion. Polymers for Advanced Technologies, 2016, 27, 993-998.	3.2	8
78	Superhydrophobic/highly oleophobic surfaces based on poly(3,4-propylenedioxythiophene) surface post-functionalization. Journal of Polymer Research, 2016, 23, 1.	2.4	6
79	Poly(3,4-propylenedioxythiophene) mono-azide and di-azide as platforms for surface post -functionalization. European Polymer Journal, 2016, 78, 38-45.	5.4	9
80	Perfluorinated ProDOT monomers for superhydrophobic/oleophobic surfaces elaboration. Journal of Fluorine Chemistry, 2016, 191, 90-96.	1.7	7
81	One-step, self-assembled highly oleophobic nanocomposite coatings. Composites Communications, 2016, 2, 1-4.	6.3	1
82	A template-free approach to nanotube-decorated polymer surfaces using 3,4-phenylenedioxythiophene (PhEDOT) monomers. Journal of Materials Chemistry A, 2016, 4, 17308-17323.	10.3	44
83	Staudinger-Ureation: A new and fast reaction for surface post-functionalization. Materials Today Communications, 2016, 8, 165-171.	1.9	3
84	One-Step and Templateless Electropolymerization Process Using Thienothiophene Derivatives To Develop Arrays of Nanotubes and Tree-like Structures with High Water Adhesion. ACS Applied Materials & Interfaces, 2016, 8, 22732-22743.	8.0	36
85	3,4-Dialkoxypyrrole for the Formation of Bioinspired Rose Petal-like Substrates with High Water Adhesion. Langmuir, 2016, 32, 12476-12487.	3.5	21
86	Macromol. Chem. Phys. 19/2016. Macromolecular Chemistry and Physics, 2016, 217, 2200-2200.	2.2	0
87	Azido Platform Surfaces for Postâ€Functionalization with Aromatic Groups Using the Huisgen Reaction to Obtain High Water Adhesion. Macromolecular Chemistry and Physics, 2016, 217, 2107-2115.	2.2	4
88	Post-functionalization of plasma treated polycarbonate substrates: An efficient way to hydrophobic, oleophobic plastics. Applied Surface Science, 2016, 387, 28-35.	6.1	19
89	Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds. Journal of Applied Polymer Science, 2016, 133, .	2.6	16
90	Switchable Surface Wettability by Using Boronic Ester Chemistry. ChemPhysChem, 2016, 17, 305-309.	2.1	8

#	Article	IF	CITATIONS
91	Nucleoside surfaces as a platform for the control of surface hydrophobicity. RSC Advances, 2016, 6, 62471-62477.	3.6	3
92	Templateless electrodeposition of conducting polymer nanotubes on mesh substrates for high water adhesion. Nano Structures Nano Objects, 2016, 7, 64-68.	3.5	10
93	Spontaneous, Phase-Separation Induced Surface Roughness: A New Method to Design Parahydrophobic Polymer Coatings with Rose Petal-like Morphology. ACS Applied Materials & Interfaces, 2016, 8, 3063-3071.	8.0	45
94	Hydrocarbon/perfluorocarbon mixed chain azides for surface post-functionalization. Journal of Fluorine Chemistry, 2016, 184, 8-15.	1.7	6
95	Staudinger–Vilarrasa reaction to develop novel monomers with amide bonds for superhydrophobic properties. Progress in Organic Coatings, 2016, 90, 431-437.	3.9	6
96	Electrodeposition of Polypyrenes with Tunable Hydrophobicity, Water Adhesion, and Fluorescence Properties. Journal of Physical Chemistry C, 2016, 120, 7077-7087.	3.1	24
97	Postfunctionalization of Azido or Alkyne Poly(3,4â€ethylenedioxythiophene) Surfaces: Superhydrophobic and Parahydrophobic Surfaces. Macromolecular Chemistry and Physics, 2016, 217, 554-561.	2.2	8
98	Parahydrophobic Surfaces by Electrodeposition of PEDOT Polymers with Aromatic Groups. Materials and Manufacturing Processes, 2016, 31, 1177-1182.	4.7	2
99	Nanoparticle covered surfaces: An efficient way to enhance superhydrophobic properties. Materials and Design, 2016, 92, 911-918.	7.0	17
100	A one-step electrodeposition of homogeneous and vertically aligned nanotubes with parahydrophobic properties (high water adhesion). Journal of Materials Chemistry A, 2016, 4, 3197-3203.	10.3	55
101	Influence of the monomer structure and electrochemical parameters on the formation of nanotubes with parahydrophobic properties (high water adhesion) by a templateless electropolymerization process. Journal of Colloid and Interface Science, 2016, 466, 413-424.	9.4	26
102	Superoleophobic/superhydrophobic PEDOP conducting copolymers with dual-responsivity by voltage and ion exchange. Materials Today Communications, 2016, 6, 1-8.	1.9	14
103	CHAPTER 3. Superoleophobic Materials. RSC Soft Matter, 2016, , 42-83.	0.4	0
104	A bioinspired approach to produce parahydrophobic properties using PEDOP conducting polymers with branched alkyl chains. Pure and Applied Chemistry, 2015, 87, 805-814.	1.9	8
105	Highly Polar Linkers (Urea, Carbamate, Thiocarbamate) for Superoleophobic/Superhydrophobic or Oleophobic/Hydrophilic Properties. Advanced Materials Interfaces, 2015, 2, 1500081.	3.7	33
106	Control over Water Adhesion on Nanostructured Parahydrophobic Films Using Mesh Substrates. ChemNanoMat, 2015, 1, 497-501.	2.8	6
107	Stepâ€byâ€Step Layerâ€byâ€Layer Assembly Using 1,2,3â€Triazole as a Platform for Controlled Multicharged and Multifunctional Coatings. ChemPlusChem, 2015, 80, 1691-1695.	2.8	3
108	Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles. Beilstein Journal of Nanotechnology, 2015, 6, 2078-2087.	2.8	11

#	Article	IF	CITATIONS
109	Controlling electrodeposited conducting polymer nanostructures with the number and the length of fluorinated chains for adjusting superhydrophobic properties and adhesion. RSC Advances, 2015, 5, 37196-37205.	3.6	17
110	Azidomethyl-EDOT as a Platform for Tunable Surfaces with Nanostructures and Superhydrophobic Properties. Journal of Physical Chemistry B, 2015, 119, 6873-6877.	2.6	25
111	Characterization of air/water interface adsorption of a series of partially fluorinated/hydrogenated quaternary ammonium salts. Journal of Fluorine Chemistry, 2015, 178, 241-248.	1.7	4
112	Using poly(3,4-ethylenedioxythiophene) containing a carbamate linker as a platform to develop electrodeposited surfaces with tunable wettability and adhesion. RSC Advances, 2015, 5, 89407-89414.	3.6	8
113	Highly hydrophobic films with high water adhesion by electrodeposition of poly(3,4-propylenedioxythiophene) containing two alkoxy groups. Colloid and Polymer Science, 2015, 293, 933-940.	2.1	14
114	Low bioaccumulative materials for parahygrophobic nanosheets with sticking behaviour. Journal of Colloid and Interface Science, 2015, 447, 167-172.	9.4	19
115	Ante versus post-functionalization to control surface structures with superhydrophobic and superoleophobic properties. RSC Advances, 2015, 5, 63945-63951.	3.6	9
116	3,4-Ethylenedioxypyrrole (EDOP) Monomers with Aromatic Substituents for Parahydrophobic Surfaces by Electropolymerization. Macromolecules, 2015, 48, 5188-5195.	4.8	23
117	Staudinger Vilarassa reaction: A powerful tool for surface modification and superhydrophobic properties. Journal of Colloid and Interface Science, 2015, 457, 72-77.	9.4	20
118	Superhydrophobic (low adhesion) and parahydrophobic (high adhesion) surfaces with micro/nanostructures or nanofilaments. Journal of Colloid and Interface Science, 2015, 453, 42-47.	9.4	22
119	Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces. Colloids and Surfaces B: Biointerfaces, 2015, 131, 59-66.	5.0	50
120	Superhydrophobic surface properties with various nanofibrous structures by electrodeposition of PEDOT polymers with short fluorinated chains and rigid spacers. Synthetic Metals, 2015, 205, 58-63.	3.9	13
121	Superhydrophobic and superoleophobic properties in nature. Materials Today, 2015, 18, 273-285.	14.2	518
122	Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures. Applied Surface Science, 2015, 356, 408-415.	6.1	20
123	Switchable and reversible superhydrophobic and oleophobic surfaces by redox response using covalent S–S bond. Reactive and Functional Polymers, 2015, 96, 44-49.	4.1	11
124	Control of Conducting Polymer Nanostructures for Parahydrophobic Properties. Recent Patents on Materials Science, 2015, 8, 247-252.	0.5	2
125	Parahydrophobic Surfaces Made of Intrinsically Hydrophilic PProDOT Nanofibers with Branched Alkyl Chains. Advanced Engineering Materials, 2014, 16, 1400-1405.	3.5	13
126	Superhydrophobic surfaces with low and high adhesion made from mixed (hydrocarbon and) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 67 T 18

Physics, 2014, 52, 782-788.

#	Article	IF	CITATIONS
127	Superoleophobic Meshes with Relatively Low Hysteresis and Sliding Angles by Electropolymerization: Importance of Polymerâ€Growth Control. ChemPlusChem, 2014, 79, 382-386.	2.8	18
128	Effect of hydrocarbon chain branching in the elaboration of superhydrophobic materials by electrodeposition of conducting polymers. Surface and Coatings Technology, 2014, 259, 594-598.	4.8	16
129	Superoleophobic Meshes with Relatively Low Hysteresis and Sliding Angles by Electropolymerization: Importance of Polymerâ€Growth Control. ChemPlusChem, 2014, 79, 334-334.	2.8	0
130	Major influence of the alkyl chain length of poly(2,4â€dialkylâ€3,4â€propylenedioxythiophene) on the surface fibrous structures and hydrophobicity. Polymers for Advanced Technologies, 2014, 25, 1252-1256.	3.2	3
131	Surface properties of new catanionic semi-fluorinated hybrid surfactants. Journal of Fluorine Chemistry, 2014, 161, 60-65.	1.7	3
132	Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories. Chemical Reviews, 2014, 114, 2694-2716.	47.7	466
133	Wettability of poly(3-alkyl-3,4-propylenedioxythiophene) fibrous structures forming nanoporous, microporous or micro/nanostructured networks. Materials Chemistry and Physics, 2014, 146, 6-11.	4.0	14
134	Superhydrophobic and oleophobic surfaces containing wrinkles and nanoparticles of PEDOT with two short fluorinated chains. RSC Advances, 2014, 4, 10935.	3.6	20
135	Wettability of conducting polymers: From superhydrophilicity to superoleophobicity. Progress in Polymer Science, 2014, 39, 656-682.	24.7	213
136	Spider-web-like fiber toward highly oleophobic fluorinated materials with low bioaccumulative potential. Reactive and Functional Polymers, 2014, 74, 46-51.	4.1	21
137	Enhancement of the Superoleophobic Properties of Fluorinated PEDOP Using Polar Glycol Spacers. Journal of Physical Chemistry C, 2014, 118, 26912-26920.	3.1	22
138	The Major Influences of Substituent Size and Position of 3,4â€₽ropylenedioxythiophene on the Formation of Highly Hydrophobic Nanofibers. ChemPlusChem, 2014, 79, 1434-1439.	2.8	22
139	Elaboration of Superhydrophobic Surfaces containing Nanofibers and Wrinkles with Controllable Water and Oil Adhesion. Macromolecular Materials and Engineering, 2014, 299, 959-965.	3.6	13
140	Oneâ€Pot Process to Control the Elaboration of Nonâ€Wetting Nanofibers. Advanced Materials Interfaces, 2014, 1, 1300094.	3.7	22
141	Superoleophobic Meshes with High Adhesion by Electrodeposition of Conducting Polymer Containing Short Perfluorobutyl Chains. Journal of Physical Chemistry C, 2014, 118, 2052-2057.	3.1	55
142	Elaboration of Voltage and Ion Exchange Stimuli-Responsive Conducting Polymers with Selective Switchable Liquid-Repellency. ACS Applied Materials & Interfaces, 2014, 6, 7953-7960.	8.0	40
143	Recent advances in the potential applications of bioinspired superhydrophobic materials. Journal of Materials Chemistry A, 2014, 2, 16319-16359.	10.3	490
144	Sticky superhydrophobic hard nanofibers from soft matter. RSC Advances, 2014, 4, 35708-35716.	3.6	10

#	Article	IF	CITATIONS
145	Homogeneous growth of conducting polymer nanofibers by electrodeposition for superhydrophobic and superoleophilic stainless steel meshes. RSC Advances, 2014, 4, 50401-50405.	3.6	23
146	Superhydrophobic conducting polymers with switchable water and oil repellency by voltage and ion exchange. RSC Advances, 2014, 4, 3550-3555.	3.6	24
147	Branched versus linear perfluorocarbon chains in the formation of superhydrophobic electrodeposited films with low bioaccumulative potential. Journal of Materials Science, 2014, 49, 7760-7769.	3.7	17
148	Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology. Applied Surface Science, 2014, 292, 782-789.	6.1	28
149	Spontaneous patterned superhydrophilic hybrid surfaces. Materials Letters, 2014, 128, 333-335.	2.6	8
150	Superhydrophobic surfaces from 3,4-propylenedioxythiophene (ProDOT) derivatives. European Polymer Journal, 2013, 49, 2267-2274.	5.4	20
151	Robustness tests on superoleophobic PEDOP films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 47-54.	4.7	12
152	Superhydrophobic Fibrous Polymers. Polymer Reviews, 2013, 53, 460-505.	10.9	61
153	Behavior of wormlike micellar solutions formed without any additives from semi-fluorinated quaternary ammonium salts. Soft Matter, 2013, 9, 8992.	2.7	8
154	Super liquid-repellent properties of electrodeposited hydrocarbon and fluorocarbon copolymers. RSC Advances, 2013, 3, 10848.	3.6	12
155	pH―and Voltageâ€&witchable Superhydrophobic Surfaces by Electroâ€Copolymerization of EDOT Derivatives Containing Carboxylic Acids and Long Alkyl Chains. ChemPhysChem, 2013, 14, 2529-2533.	2.1	33
156	Influence of intrinsic oleophobicity and surface structuration on the superoleophobic properties of PEDOP films bearing two fluorinated tails. Journal of Materials Chemistry A, 2013, 1, 2896.	10.3	37
157	Superhydrophobic Conducting Polymers Based on Hydrocarbon Poly(3,4â€Ethylenedioxyselenophene). ChemPhysChem, 2013, 14, 2947-2953.	2.1	18
158	Highly hydrophobic films with various adhesion by electrodeposition of poly(3,4-bis(alkoxy)thiophene)s. Soft Matter, 2013, 9, 1500-1505.	2.7	25
159	One <i>F</i> -Octyl versus Two <i>F</i> -Butyl Chains in Surfactant Aggregation Behavior. Langmuir, 2013, 29, 14815-14822.	3.5	17
160	Analogy of morphology in electrodeposited hydrocarbon and fluorocarbon polymers. RSC Advances, 2013, 3, 647-652.	3.6	30
161	Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 2013, 15, 283-306.	9.0	428
162	Superoleophobic polymers with metal ion affinity toward materials with both oleophobic and hydrophilic properties. Journal of Colloid and Interface Science, 2013, 408, 101-106.	9.4	26

#	Article	IF	CITATIONS
163	Superhydrophobic Surfaces by Electrochemical Processes. Advanced Materials, 2013, 25, 1378-1394.	21.0	395
164	Superoleophobic surfaces with short fluorinated chains?. Soft Matter, 2013, 9, 5982.	2.7	108
165	Influence of long alkyl spacers in the elaboration of superoleophobic surfaces with short fluorinated chains. RSC Advances, 2013, 3, 5556.	3.6	33
166	Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science, 2013, 402, 1-18.	9.4	609
167	Highly Oleophobic Properties of PEDOP Polymers with Short Perfluorobutyl Chains Separated by Long Alkyl Spacers and Amido Connectors. Macromolecular Chemistry and Physics, 2013, 214, 2036-2042.	2.2	17
168	Influence of intrinsic hydrophobicity and surface structuration. Surface Innovations, 2013, 1, 98-104.	2.3	6
169	Superoleophobic Meshes with Relatively Low Hysteresis and Sliding Angles by Electropolymerization: Importance of Polymer-Growth Control. ChemPlusChem, 2013, , n/a-n/a.	2.8	1
170	Tunable Surface Nanoporosity by Electropolymerization of <i>N</i> â€Alkylâ€3,4â€ethylenedioxypyrroles With Different Alkyl Chain Lengths. Macromolecular Chemistry and Physics, 2012, 213, 2492-2497.	2.2	25
171	Structured biotinylated poly(3,4-ethylenedioxypyrrole) electrodes for biochemical applications. RSC Advances, 2012, 2, 1033-1039.	3.6	15
172	Superhydrophobic hollow spheres by electrodeposition of fluorinated poly(3,4-ethylenedithiopyrrole). RSC Advances, 2012, 2, 10899.	3.6	21
173	Surface Structuration (Micro and/or Nano) Governed by the Fluorinated Tail Lengths toward Superoleophobic Surfaces. Langmuir, 2012, 28, 186-192.	3.5	60
174	Superhydrophobic nanofiber arrays and flower-like structures of electrodeposited conducting polymers. Soft Matter, 2012, 8, 9110.	2.7	44
175	Microwave-assisted synthesis of silver nanoprisms/nanoplates using a "modified polyol processâ€. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 145-151.	4.7	67
176	Synthesis, characterization and surface wettability of polythiophene derivatives containing semi-fluorinated liquid-crystalline segment. Journal of Fluorine Chemistry, 2012, 134, 85-89.	1.7	13
177	Superoleophobic behavior of fluorinated conductive polymer films combining electropolymerization and lithography. Soft Matter, 2011, 7, 1053-1057.	2.7	93
178	Versatile Superhydrophobic Surfaces from a Bioinspired Approach. Macromolecules, 2011, 44, 9286-9294.	4.8	46
179	Superhydrophobic Fiber Mats by Electrodeposition of Fluorinated Poly(3,4-ethyleneoxythiathiophene). Journal of the American Chemical Society, 2011, 133, 15627-15634.	13.7	121
180	Superhydrophobic Surfaces of Electrodeposited Polypyrroles Bearing Fluorinated Liquid Crystalline Segments. Macromolecules, 2010, 43, 9365-9370.	4.8	32

#	Article	IF	CITATIONS
181	Connector Ability To Design Superhydrophobic and Oleophobic Surfaces from Conducting Polymers. Langmuir, 2010, 26, 13545-13549.	3.5	40
182	Hydrocarbon versus Fluorocarbon in the Electrodeposition of Superhydrophobic Polymer Films. Langmuir, 2010, 26, 17596-17602.	3.5	64
183	One-pot method for build-up nanoporous super oil-repellent films. Journal of Colloid and Interface Science, 2009, 335, 146-149.	9.4	32
184	Molecular Design of Conductive Polymers To Modulate Superoleophobic Properties. Journal of the American Chemical Society, 2009, 131, 7928-7933.	13.7	187
185	Fluorophobic Effect for Building up the Surface Morphology of Electrodeposited Substituted Conductive Polymers. Langmuir, 2009, 25, 5463-5466.	3.5	42
186	One methylene unit to control super oil-repellency properties of conducting polymers. Chemical Communications, 2009, , 2210.	4.1	17
187	Super oil-repellent surfaces from conductive polymers. Journal of Materials Chemistry, 2009, 19, 7130.	6.7	39
188	Electrodeposited polymer films with both superhydrophobicity and superoleophilicity. Physical Chemistry Chemical Physics, 2008, 10, 4322.	2.8	57
189	Synthesis and Properties of Perfluorinated Conjugated Polymers Based on Polyethylenedioxythiophene, Polypyrrole, and Polyfluorene. Toward Surfaces with Special Wettabilities. Langmuir, 2008, 24, 9739-9746.	3.5	47
190	Highly fluorinated sulfamates with thermotropic liquid crystalline properties. Liquid Crystals, 0, , 1-8.	2.2	0
191	Switchable and Reversible Superhydrophobic Surfaces: Part One. , 0, , .		2