Timothy P Stinear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7252602/publications.pdf

Version: 2024-02-01

223 papers

12,582 citations

28190 55 h-index 33814

g-index

259 all docs

259 docs citations

times ranked

259

11946 citing authors

#	Article	IF	CITATIONS
1	Reduced Vancomycin Susceptibility in <i>Staphylococcus aureus</i> , Including Vancomycin-Intermediate Strains: Resistance Mechanisms, Laboratory Detection, and Clinical Implications. Clinical Microbiology Reviews, 2010, 23, 99-139.	5.7	804
2	Insights from the complete genome sequence of <i>Mycobacterium marinum</i> on the evolution of <i>Mycobacterium tuberculosis</i> . Genome Research, 2008, 18, 729-741.	2.4	471
3	Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1345-1349.	3.3	345
4	Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Research, 2007, 17, 192-200.	2.4	345
5	Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKR. PLoS Pathogens, 2011, 7, e1002359.	2.1	315
6	Bacterial membrane vesicles transport their DNA cargo into host cells. Scientific Reports, 2017, 7, 7072.	1.6	267
7	Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature Genetics, 2013, 45, 172-179.	9.4	264
8	Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes. Journal of Clinical Microbiology, 2016, 54, 333-342.	1.8	239
9	Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nature Microbiology, 2018, 3, 1175-1185.	5.9	206
10	Buruli Ulcer (M. ulcerans Infection): New Insights, New Hope for Disease Control. PLoS Medicine, 2005, 2, e108.	3.9	205
11	Human blood MAIT cell subsets defined using MR1 tetramers. Immunology and Cell Biology, 2018, 96, 507-525.	1.0	205
12	Isolates with Low-Level Vancomycin Resistance Associated with Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 2006, 50, 3039-3047.	1.4	199
13	<i>Mycobacterium ulcerans</i> i>in Mosquitoes Captured during Outbreak of Buruli Ulcer, Southeastern Australia. Emerging Infectious Diseases, 2007, 13, 1653-1660.	2.0	199
14	Two Novel Point Mutations in Clinical Staphylococcus aureus Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection. PLoS Pathogens, 2010, 6, e1000944.	2.1	191
15	Development and Application of Two Multiplex Real-Time PCR Assays for the Detection of Mycobacterium ulcerans in Clinical and Environmental Samples. Applied and Environmental Microbiology, 2007, 73, 4733-4740.	1.4	189
16	Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nature Reviews Microbiology, 2009, 7, 50-60.	13.6	175
17	Complete Bypass of Restriction Systems for Major Staphylococcus aureus Lineages. MBio, 2015, 6, e00308-15.	1.8	168
18	A Major Role for Mammals in the Ecology of Mycobacterium ulcerans. PLoS Neglected Tropical Diseases, 2010, 4, e791.	1.3	166

#	Article	IF	CITATIONS
19	Increasing tolerance of hospital $\langle i \rangle$ Enterococcus faecium $\langle i \rangle$ to handwash alcohols. Science Translational Medicine, 2018, 10, .	5.8	165
20	Mycobacterial Toxin Induces Analgesia in Buruli Ulcer by Targeting the Angiotensin Pathways. Cell, 2014, 157, 1565-1576.	13.5	160
21	Identification and Characterization of IS <i>2404</i> and IS <i>2606</i> : Two Distinct Repeated Sequences for Detection of <i>Mycobacterium ulcerans</i> by PCR. Journal of Clinical Microbiology, 1999, 37, 1018-1023.	1.8	154
22	Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Current Opinion in Microbiology, 2018, 41, 76-82.	2.3	153
23	Tracking the COVID-19 pandemic in Australia using genomics. Nature Communications, 2020, 11, 4376.	5.8	152
24	Comparative Genetic Analysis of Mycobacterium ulcerans and Mycobacterium marinum Reveals Evidence of Recent Divergence. Journal of Bacteriology, 2000, 182, 6322-6330.	1.0	150
25	On the origin of Mycobacterium ulcerans, the causative agent of Buruli ulcer. BMC Genomics, 2012, 13, 258.	1.2	139
26	Genomic Analysis Reveals a Point Mutation in the Two-Component Sensor Gene <i>graS</i> That Leads to Intermediate Vancomycin Resistance in Clinical <i>Staphylococcus aureus</i> and Chemotherapy, 2008, 52, 3755-3762.	1.4	137
27	Genomic Insights to Control the Emergence of Vancomycin-Resistant Enterococci. MBio, 2013, 4, .	1.8	136
28	Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nature Microbiology, 2017, 2, 1676-1685.	5.9	136
29	Aquatic Plants Stimulate the Growth of and Biofilm Formation by Mycobacterium ulcerans in Axenic Culture and Harbor These Bacteria in the Environment. Applied and Environmental Microbiology, 2004, 70, 1097-1103.	1.4	135
30	Comparative Analysis of the First Complete Enterococcus faecium Genome. Journal of Bacteriology, 2012, 194, 2334-2341.	1.0	133
31	The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infection, Genetics and Evolution, 2014, 21, 575-582.	1.0	115
32	Emergence of a Ribotype 244 Strain of Clostridium difficile Associated With Severe Disease and Related to the Epidemic Ribotype 027 Strain. Clinical Infectious Diseases, 2014, 58, 1723-1730.	2.9	111
33	Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. Lancet, The, 2001, 357, 855-856.	6.3	107
34	Different bacterial gene expression patterns and attenuated host immune responses are associated with the evolution of low-level vancomycin resistance during persistent methicillin-resistant Staphylococcus aureus bacteraemia. BMC Microbiology, 2008, 8, 39.	1.3	106
35	Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9876-9881.	3.3	103
36	A Sustained Hospital Outbreak of Vancomycinâ€Resistant <i>Enterococcus faecium</i> Bacteremia due to Emergence of <i>vanB E. faecium</i> Sequence Type 203. Journal of Infectious Diseases, 2010, 202, 1278-1286.	1.9	98

#	Article	IF	CITATIONS
37	The RpoB H481Y Rifampicin Resistance Mutation and an Active Stringent Response Reduce Virulence and Increase Resistance to Innate Immune Responses in Staphylococcus aureus. Journal of Infectious Diseases, 2013, 207, 929-939.	1.9	94
38	Sensitive and Rapid Detection of Viable <i>Giardia</i> Cysts and <i>Cryptosporidium parvum</i> Oocysts in Large-Volume Water Samples with Wound Fiberglass Cartridge Filters and Reverse Transcription-PCR. Applied and Environmental Microbiology, 1998, 64, 1743-1749.	1.4	90
39	Outbreak Investigation Using High-Throughput Genome Sequencing within a Diagnostic Microbiology Laboratory. Journal of Clinical Microbiology, 2013, 51, 1396-1401.	1.8	86
40	Identification of Mycobacterium ulcerans in the Environment from Regions in Southeast Australia in Which It Is Endemic with Sequence Capture-PCR. Applied and Environmental Microbiology, 2000, 66, 3206-3213.	1.4	85
41	Analysis of the Small RNA Transcriptional Response in Multidrug-Resistant Staphylococcus aureus after Antimicrobial Exposure. Antimicrobial Agents and Chemotherapy, 2013, 57, 3864-3874.	1.4	84
42	Convergent Adaptation in the Dominant Global Hospital Clone ST239 of Methicillin-Resistant Staphylococcus aureus. MBio, 2015, 6, e00080.	1.8	81
43	pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nature Microbiology, 2016, 1, 15019.	5.9	81
44	<i>Staphylococcus aureus</i> membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. Journal of Extracellular Vesicles, 2021, 10, e12080.	5.5	80
45	Mycolactones and Mycobacterium ulcerans disease. Lancet, The, 2003, 362, 1062-1064.	6.3	78
46	The Dominant Australian Community-Acquired Methicillin-Resistant Staphylococcus aureus Clone ST93-IV [2B] Is Highly Virulent and Genetically Distinct. PLoS ONE, 2011, 6, e25887.	1.1	78
47	A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Molecular Microbiology, 2014, 93, 835-852.	1.2	76
48	Common Evolutionary Origin for the Unstable Virulence Plasmid pMUM Found in Geographically Diverse Strains of Mycobacterium ulcerans. Journal of Bacteriology, 2005, 187, 1668-1676.	1.0	74
49	Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Neglected Tropical Diseases, 2017, 11, e0005553.	1.3	73
50	Complete Genome Sequence of <i>Staphylococcus aureus</i> Strain JKD6008, an ST239 Clone of Methicillin-Resistant <i>Staphylococcus aureus</i> Journal of Bacteriology, 2010, 192, 5848-5849.	1.0	71
51	Molecular Epidemiology of Enterococcal Bacteremia in Australia. Journal of Clinical Microbiology, 2014, 52, 897-905.	1.8	70
52	<i>Mycobacterium chimaera</i> Spread from Heating and Cooling Units in Heart Surgery. New England Journal of Medicine, 2017, 376, 600-602.	13.9	70
53	Unstable chromosome rearrangements in <i>Staphylococcus aureus</i> cause phenotype switching associated with persistent infections. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20135-20140.	3.3	69
54	Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology (United Kingdom), 2005, 151, 683-692.	0.7	68

#	Article	IF	Citations
55	Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus. BMC Microbiology, 2014, 14, 31.	1.3	68
56	Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ, 2018, 6, e4210.	0.9	66
57	Decreased Vancomycin Susceptibility in Staphylococcus aureus Caused by IS <i>256</i> Tempering of WalkR Expression. Antimicrobial Agents and Chemotherapy, 2013, 57, 3240-3249.	1.4	62
58	Validation of a single-step, single-tube reverse transcription loop-mediated isothermal amplification assay for rapid detection of SARS-CoV-2 RNA. Journal of Medical Microbiology, 2020, 69, 1169-1178.	0.7	61
59	A Simple PCR Method for Rapid Genotype Analysis of <i>Mycobacterium ulcerans</i> . Journal of Clinical Microbiology, 2000, 38, 1482-1487.	1.8	58
60	Genomic epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in New Zealand. Journal of Antimicrobial Chemotherapy, 2018, 73, 353-364.	1.3	57
61	Genomics for Molecular Epidemiology and Detecting Transmission of Carbapenemase-Producing <i>Enterobacterales</i> in Victoria, Australia, 2012 to 2016. Journal of Clinical Microbiology, 2019, 57, .	1.8	56
62	Deciphering the genetic basis for polyketide variation among mycobacteria producing mycolactones. BMC Genomics, 2008, 9, 462.	1.2	55
63	Convergent Evolution Driven by Rifampin Exacerbates the Global Burden of Drug-Resistant Staphylococcus aureus. MSphere, 2018, 3, .	1.3	55
64	Complete Genome Sequence of <i>Staphylococcus aureus</i> Strain JKD6159, a Unique Australian Clone of ST93-IV Community Methicillin-Resistant <i>Staphylococcus aureus</i> Journal of Bacteriology, 2010, 192, 5556-5557.	1.0	54
65	The genome, evolution and diversity of Mycobacterium ulcerans. Infection, Genetics and Evolution, 2012, 12, 522-529.	1.0	54
66	Genomicsâ€Driven Discovery of NOâ€Donating Diazeniumdiolate Siderophores in Diverse Plantâ€Associated Bacteria. Angewandte Chemie - International Edition, 2019, 58, 13024-13029.	7.2	53
67	Genomics-informed responses in the elimination of COVID-19 in Victoria, Australia: an observational, genomic epidemiological study. Lancet Public Health, The, 2021, 6, e547-e556.	4.7	53
68	Single Nucleotide Polymorphism Typing of Mycobacterium ulcerans Reveals Focal Transmission of Buruli Ulcer in a Highly Endemic Region of Ghana. PLoS Neglected Tropical Diseases, 2010, 4, e751.	1.3	51
69	Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathogens, 2020, 16, e1008287.	2.1	51
70	Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium. BMC Genomics, 2013, 14, 595.	1.2	50
71	Mycobacterium ulcerans and Other Mycolactone-Producing Mycobacteria Should Be Considered a Single Species. PLoS Neglected Tropical Diseases, 2010, 4, e663.	1.3	49
72	Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia. Genome Medicine, 2018, 10, 65.	3.6	49

#	Article	IF	Citations
73	In-vitro Activity of Avermectins against Mycobacterium ulcerans. PLoS Neglected Tropical Diseases, 2015, 9, e0003549.	1.3	46
74	Evolutionary origins of the emergent ST796 clone of vancomycin resistant <i>Enterococcus faecium</i> . PeerJ, 2017, 5, e2916.	0.9	46
75	Evaluation of VNTR typing for the identification of <i>Mycobacterium ulcerans </i> in environmental samples from Victoria, Australia. FEMS Microbiology Letters, 2008, 287, 250-255.	0.7	45
76	Complete Genome Sequence of the Frog Pathogen Mycobacterium ulcerans Ecovar Liflandii. Journal of Bacteriology, 2013, 195, 556-564.	1.0	44
77	Emergence of endemic MLST non-typeable vancomycin-resistant <i>Enterococcus faecium</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 3367-3371.	1.3	44
78	Bystander Activation of Pulmonary Trm Cells Attenuates the Severity of Bacterial Pneumonia by Enhancing Neutrophil Recruitment. Cell Reports, 2019, 29, 4236-4244.e3.	2.9	44
79	Genomics of vancomycin-resistant Enterococcus faecium. Microbial Genomics, 2019, 5, .	1.0	44
80	Whole-genome sequencing reveals transmission of gonococcal antibiotic resistance among men who have sex with men: an observational study. Sexually Transmitted Infections, 2018, 94, 151-157.	0.8	42
81	Bacterial endosymbionts protect beneficial soil fungus from nematode attack. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
82	The Molecular Epidemiology of the Highly Virulent ST93 Australian Community Staphylococcus aureus Strain. PLoS ONE, 2012, 7, e43037.	1.1	42
83	Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nature Chemistry, 2022, 14, 701-712.	6.6	42
84	Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants. BioEssays, 2009, 31, 378-388.	1.2	41
85	Rapid Emergence and Evolution of Staphylococcus aureus Clones Harboring <i>fusC</i> -Containing Staphylococcal Cassette Chromosome Elements. Antimicrobial Agents and Chemotherapy, 2016, 60, 2359-2365.	1.4	41
86	Adaptive Change Inferred from Genomic Population Analysis of the ST93 Epidemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus. Genome Biology and Evolution, 2014, 6, 366-378.	1.1	40
87	Zinc-binding to the cytoplasmic PAS domain regulates the essential WalK histidine kinase of Staphylococcus aureus. Nature Communications, 2019, 10, 3067.	5.8	38
88	Mycolactone Gene Expression Is Controlled by Strong SigA-Like Promoters with Utility in Studies of Mycobacterium ulcerans and Buruli Ulcer. PLoS Neglected Tropical Diseases, 2009, 3, e553.	1.3	37
89	Analysis of a Novel <i>pncA</i> Mutation for Susceptibility to Pyrazinamide Therapy. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 541-544.	2.5	37
90	Detection of pathogenic <i>Yersinia enterocolitica </i> in environmental waters by PCR. Journal of Applied Bacteriology, 1996, 80, 327-332.	1.1	36

#	Article	IF	Citations
91	Rapid and Sensitive Detection of Mycobacterium ulcerans by Use of a Loop-Mediated Isothermal Amplification Test. Journal of Clinical Microbiology, 2012, 50, 1737-1741.	1.8	36
92	Mycobacterial Pathogenomics and Evolution. Microbiology Spectrum, 2014, 2, MGM2-0025-2013.	1.2	36
93	Genomic Analysis of Multiresistant Staphylococcus capitis Associated with Neonatal Sepsis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	34
94	Key parameters for genomics-based real-time detection and tracking of multidrug-resistant bacteria: a systematic analysis. Lancet Microbe, The, 2021, 2, e575-e583.	3.4	33
95	Mycobacterium ulcerans — a mini-review. Journal of Medical Microbiology, 1999, 48, 511-513.	0.7	33
96	Ongoing Genome Reduction in Mycobacterium ulcerans. Emerging Infectious Diseases, 2007, 13, 1008-1015.	2.0	32
97	Population genetics and the evolution of virulence in Staphylococcus aureus. Infection, Genetics and Evolution, 2014, 21, 554-562.	1.0	32
98	Multiple introductions and recent spread of the emerging human pathogen <i>Mycobacterium ulcerans</i> across Africa. Genome Biology and Evolution, 2017, 9, evx003.	1.1	32
99	Comparative Genomics Shows That Mycobacterium ulcerans Migration and Expansion Preceded the Rise of Buruli Ulcer in Southeastern Australia. Applied and Environmental Microbiology, 2018, 84, .	1.4	32
100	Genomic insights into a sustained national outbreak of <i>Yersinia pseudotuberculosis</i> Biology and Evolution, 2016, 8, evw285.	1.1	31
101	Intracellular <scp><i>Staphylococcus aureus</i></scp> and host cell death pathways. Cellular Microbiology, 2021, 23, e13317.	1.1	31
102	NGMASTER: in silico multi-antigen sequence typing for Neisseria gonorrhoeae. Microbial Genomics, 2016, 2, e000076.	1.0	31
103	Serological Evaluation of Mycobacterium ulcerans Antigens Identified by Comparative Genomics. PLoS Neglected Tropical Diseases, 2010, 4, e872.	1.3	30
104	Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics, 2016, 17, 537.	1.2	30
105	Vancomycin-intermediate Staphylococcus aureus isolates are attenuated for virulence when compared with susceptible progenitors. Clinical Microbiology and Infection, 2017, 23, 767-773.	2.8	30
106	Vancomycin-resistant Enterococcus faecium sequence type 796 - rapid international dissemination of a new epidemic clone. Antimicrobial Resistance and Infection Control, 2018, 7, 44.	1.5	30
107	Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes. Microbiology Spectrum, 2021, 9, e0127321.	1.2	30
108	Multi-site assessment of rapid, point-of-care antigen testing for the diagnosis of SARS-CoV-2 infection in a low-prevalence setting: A validation and implementation study. The Lancet Regional Health - Western Pacific, 2021, 9, 100115.	1.3	29

#	Article	IF	CITATIONS
109	Topical Antibiotic Use Coselects for the Carriage of Mobile Genetic Elements Conferring Resistance to Unrelated Antimicrobials in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2018, 62,	1.4	28
110	Mining the Methylome Reveals Extensive Diversity in Staphylococcus epidermidis Restriction Modification. MBio, 2019, 10, .	1.8	28
111	Investigating the Role of Free-living Amoebae as a Reservoir for Mycobacterium ulcerans. PLoS Neglected Tropical Diseases, 2014, 8, e3148.	1.3	27
112	The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study. Journal of Antimicrobial Chemotherapy, 2018, 73, 3268-3278.	1.3	27
113	Comprehensive Genomic Investigation of Adaptive Mutations Driving the Low-Level Oxacillin Resistance Phenotype in Staphylococcus aureus. MBio, 2020, 11, .	1.8	27
114	Comprehensive proteome analysis of <i>Mycobacterium ulcerans</i> and quantitative comparison of mycolactone biosynthesis. Proteomics, 2008, 8, 3124-3138.	1.3	26
115	Comprehensive antibiotic-linked mutation assessment by resistance mutation sequencing (RM-seq). Genome Medicine, 2018, 10, 63.	3.6	26
116	Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer. PLoS Neglected Tropical Diseases, 2021, 15, e0009678.	1.3	26
117	The Lipoprotein LpqW Is Essential for the Mannosylation of Periplasmic Glycolipids in Corynebacteria. Journal of Biological Chemistry, 2012, 287, 42726-42738.	1.6	25
118	Analysis of the Vaccine Potential of Plasmid DNA Encoding Nine Mycolactone Polyketide Synthase Domains in Mycobacterium ulcerans Infected Mice. PLoS Neglected Tropical Diseases, 2014, 8, e2604.	1.3	25
119	Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection. Cell Reports, 2021, 35, 109108.	2.9	25
120	Regulation of Mycolactone, the Mycobacterium ulcerans Toxin, Depends on Nutrient Source. PLoS Neglected Tropical Diseases, 2013, 7, e2502.	1.3	24
121	Identification of the Mycobacterium ulcerans Protein MUL_3720 as a Promising Target for the Development of a Diagnostic Test for Buruli Ulcer. PLoS Neglected Tropical Diseases, 2015, 9, e0003477.	1.3	24
122	Exposure Risk for Infection and Lack of Human-to-Human Transmission of <i>Mycobacterium ulcerans </i> Disease, Australia. Emerging Infectious Diseases, 2017, 23, 837-840.	2.0	24
123	Genome Mining Reveals Endopyrroles from a Nonribosomal Peptide Assembly Line Triggered in Fungal–Bacterial Symbiosis. ACS Chemical Biology, 2019, 14, 1811-1818.	1.6	24
124	Symbiosis, virulence and natural-product biosynthesis in entomopathogenic bacteria are regulated by a small RNA. Nature Microbiology, 2020, 5, 1481-1489.	5.9	24
125	A phylogenomic framework for assessing the global emergence and evolution of clonal complex 398 methicillin-resistant Staphylococcus aureus. Microbial Genomics, 2017, 3, e000105.	1.0	24
126	Whole Genome Comparisons Suggest Random Distribution of Mycobacterium ulcerans Genotypes in a Buruli Ulcer Endemic Region of Ghana. PLoS Neglected Tropical Diseases, 2015, 9, e0003681.	1.3	23

#	Article	IF	CITATIONS
127	Structure and Biosynthesis of Isatropolones, Bioactive Amineâ€Scavenging Fluorescent Natural Products from <i>Streptomyces</i> àêGö66. Angewandte Chemie - International Edition, 2017, 56, 4945-4949.	7.2	22
128	Dual Gene Expression Analysis Identifies Factors Associated with Staphylococcus aureus Virulence in Diabetic Mice. Infection and Immunity, 2019, 87, .	1.0	22
129	Global analysis of adenylate-forming enzymes reveals \hat{l}^2 -lactone biosynthesis pathway in pathogenic Nocardia. Journal of Biological Chemistry, 2020, 295, 14826-14839.	1.6	22
130	Mining Symbionts of a Spiderâ€Transmitted Fungus Illuminates Uncharted Biosynthetic Pathways to Cytotoxic Benzolactones. Angewandte Chemie - International Edition, 2020, 59, 7766-7771.	7.2	22
131	First case of Mycobacterium ulcerans disease (Bairnsdale or Buruli ulcer) acquired in New South Wales. Medical Journal of Australia, 2007, 186, 62-63.	0.8	21
132	Regulation of the $18\hat{a} \in f$ kDa heat shock protein in <i>Mycobacterium ulcerans</i> : an alpha $\hat{a} \in f$ crystallin orthologue that promotes biofilm formation. Molecular Microbiology, 2010, 78, 1216-1231.	1.2	20
133	Emergence of multidrug resistance in locally-acquired human infections with Salmonella Typhimurium in Australia owing to a new clade harbouring bla CTX-M-9. International Journal of Antimicrobial Agents, 2017, 50, 101-105.	1.1	20
134	Genome Mining and Heterologous Expression Reveal Two Distinct Families of Lasso Peptides Highly Conserved in Endofungal Bacteria. ACS Chemical Biology, 2020, 15, 1169-1176.	1.6	20
135	From cloning to mutant in 5 days: rapid allelic exchange in Staphylococcus aureus. Access Microbiology, 2020, 3, 000193.	0.2	20
136	Population genomics provides insights into the evolution and adaptation to humans of the waterborne pathogen Mycobacterium kansasii. Nature Communications, 2021, 12, 2491.	5.8	20
137	Genomic analysis of ST88 community-acquired methicillin resistant <i>Staphylococcus aureus</i> in Ghana. PeerJ, 2017, 5, e3047.	0.9	20
138	Optimising genomic approaches for identifying vancomycin-resistant Enterococcus faecium transmission in healthcare settings. Nature Communications, 2022, 13, 509.	5.8	20
139	Subtractive Hybridization Reveals a Type I Polyketide Synthase Locus Specific to Mycobacterium ulcerans. Journal of Bacteriology, 2003, 185, 6870-6882.	1.0	19
140	Genomic analysis of teicoplanin resistance emerging during treatment of vanB vancomycin-resistant Enterococcus faecium infections in solid organ transplant recipients including donor-derived cases. Journal of Antimicrobial Chemotherapy, 2013, 68, 2134-2139.	1.3	19
141	Possible healthcare-associated transmission as a cause of secondary infection and population structure of Staphylococcus aureus isolates from two wound treatment centres in Ghana. New Microbes and New Infections, 2016, 13, 92-101.	0.8	19
142	YycH and YycI Regulate Expression of Staphylococcus aureus Autolysins by Activation of WalRK Phosphorylation. Microorganisms, 2020, 8, 870.	1.6	19
143	Correspondence: Spontaneous secondary mutations confound analysis of the essential two-component system WalKR in Staphylococcus aureus. Nature Communications, 2017, 8, 14403.	5.8	18
144	Remodeling of pSK1 Family Plasmids and Enhanced Chlorhexidine Tolerance in a Dominant Hospital Lineage of Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	18

#	Article	IF	CITATIONS
145	The Cell Wall-Associated Mycolactone Polyketide Synthases Are Necessary but Not Sufficient for Mycolactone Biosynthesis. PLoS ONE, 2013, 8, e70520.	1.1	18
146	Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. ELife, 0, 11 , .	2.8	18
147	Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA. Journal of Clinical Microbiology, 2017, 55, 1847-1856.	1.8	17
148	Functional analysis of the first complete genome sequence of a multidrug resistant sequence type 2 Staphylococcus epidermidis. Microbial Genomics, 2016, 2, e000077.	1.0	17
149	Use of bacterial whole-genome sequencing to understand and improve the management of invasive <i>Staphylococcus aureus</i> infections. Expert Review of Anti-Infective Therapy, 2016, 14, 1023-1036.	2.0	16
150	Burkholderia lata Infections from Intrinsically Contaminated Chlorhexidine Mouthwash, Australia, 2016. Emerging Infectious Diseases, 2018, 24, 2109-2111.	2.0	16
151	Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus. Microbial Genomics, 2015, 1, e000026.	1.0	16
152	Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends in Microbiology, 2022, 30, 853-865.	3.5	16
153	Genome sequence comparisons of serial multi-drug-resistant Mycobacterium tuberculosis isolates over 21 years of infection in a single patient. Microbial Genomics, 2015, 1, e000037.	1.0	15
154	Sharing Is Caring: International Sharing of Data Enhances Genomic Surveillance of <i>Listeria monocytogenes </i> . Clinical Infectious Diseases, 2016, 63, 846.1-848.	2.9	15
155	Reconstruction of the Genomes of Drug-Resistant Pathogens for Outbreak Investigation through Metagenomic Sequencing. MSphere, 2019, 4, .	1.3	15
156	RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA $3\hat{a} \in ^2$ UTR required for intermediate vancomycin resistance. Nature Communications, 2022, 13, .	5.8	15
157	A Genomic Approach to Resolving Relapse versus Reinfection among Four Cases of Buruli Ulcer. PLoS Neglected Tropical Diseases, 2015, 9, e0004158.	1.3	14
158	Mycobacterium ulcerans Population Genomics To Inform on the Spread of Buruli Ulcer across Central Africa. MSphere, 2019, 4, .	1.3	14
159	Use of emerging testing technologies and approaches for SARS-CoV-2: review of literature and global experience in an Australian context. Pathology, 2021, 53, 689-699.	0.3	14
160	Biosynthesis and Etherâ€Bridge Formation in Nargenicin Macrolides. Angewandte Chemie - International Edition, 2019, 58, 3996-4001.	7.2	13
161	Systematic review of M. Bovis BCG and other candidate vaccines for Buruli ulcer prophylaxis. Vaccine, 2021, 39, 7238-7252.	1.7	13
162	Transfer, stable maintenance and expression of the mycolactone polyketide megasynthase mls genes in a recombination-impaired Mycobacterium marinum. Microbiology (United Kingdom), 2009, 155, 1923-1933.	0.7	12

#	Article	IF	CITATIONS
163	1,2,4-Oxadiazole antimicrobials act synergistically with daptomycin and display rapid kill kinetics against MDR Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 2018, 73, 1562-1569.	1.3	12
164	Genomicsâ€Driven Discovery of NOâ€Donating Diazeniumdiolate Siderophores in Diverse Plantâ€Associated Bacteria. Angewandte Chemie, 2019, 131, 13158-13163.	1.6	12
165	From Marinum to Ulcerans: a Mycobacterial Human Pathogen Emerges. Microbe Magazine, 2007, 2, 187-194.	0.4	12
166	Proteomic Characterization of a Natural Host–Pathogen Interaction: Repertoire of in Vivo Expressed Bacterial and Host Surface-Associated Proteins. Journal of Proteome Research, 2015, 14, 120-132.	1.8	11
167	Methicillin Resistant Staphylococcus aureus Transmission in a Ghanaian Burn Unit: The Importance of Active Surveillance in Resource-Limited Settings. Frontiers in Microbiology, 2017, 8, 1906.	1.5	11
168	The First Isolation and Whole Genome Sequencing of Murray Valley Encephalitis Virus from Cerebrospinal Fluid of a Patient with Encephalitis. Viruses, 2018, 10, 319.	1.5	11
169	Vaccine-Specific Immune Responses against Mycobacterium ulcerans Infection in a Low-Dose Murine Challenge Model. Infection and Immunity, 2020, 88, .	1.0	11
170	Oakâ€Associated Negativicute Equipped with Ancestral Aromatic Polyketide Synthase Produces Antimycobacterial Dendrubins. Chemistry - A European Journal, 2020, 26, 13147-13151.	1.7	11
171	Tuberculosis in Australia's tropical north: a population-based genomic epidemiological study. The Lancet Regional Health - Western Pacific, 2021, 15, 100229.	1.3	11
172	Daptomycin Resistance Occurs Predominantly in vanA-Type Vancomycin-Resistant Enterococcus faecium in Australasia and Is Associated With Heterogeneous and Novel Mutations. Frontiers in Microbiology, 2021, 12, 749935.	1.5	11
173	Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease. Scientific Reports, 2015, 5, 17693.	1.6	10
174	Identification and Mobilization of a Cryptic Antibiotic Biosynthesis Gene Locus from a Human-Pathogenic <i>Nocardia</i> Isolate. ACS Chemical Biology, 2020, 15, 1161-1168.	1.6	10
175	Staphylococcus aureus induces cell-surface expression of immune stimulatory NKG2D ligands on human monocytes. Journal of Biological Chemistry, 2020, 295, 11803-11821.	1.6	10
176	Complete microbial genomes for public health in Australia and the Southwest Pacific. Microbial Genomics, 2020, 6, .	1.0	10
177	High antibody titres induced by protein subunit vaccines using <i>Mycobacterium ulcerans </i> Hsp18 and MUL_3720 with a TLR-2 agonist fail to protect against Buruli ulcer in mice. PeerJ, 2020, 8, e9659.	0.9	10
178	Significant variability exists in the cytotoxicity of global methicillin-resistant Staphylococcus aureus lineages. Microbiology (United Kingdom), 2021, 167, .	0.7	10
179	Functional genomics of Staphylococcus aureus. Briefings in Functional Genomics, 2013, 12, 305-315.	1.3	9
180	Neutrophils play an ongoing role in preventing bacterial pneumonia by blocking the dissemination of <i>Staphylococcus aureus</i> from the upper to the lower airways. Immunology and Cell Biology, 2020, 98, 577-594.	1.0	9

#	Article	IF	Citations
181	Mycobacterium ulcerans DNA Not Detected in Faecal Samples from Buruli Ulcer Patients: Results of a Pilot Study. PLoS ONE, 2011, 6, e19611.	1.1	9
182	In Vivo Imaging of Bioluminescent Mycobacterium ulcerans: A Tool to Refine the Murine Buruli Ulcer Tail Model. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1312-1321.	0.6	9
183	Snapshot fecal survey of domestic animals in rural Ghana for <i>Mycobacterium ulcerans</i> . PeerJ, 2016, 4, e2065.	0.9	9
184	Long-Read RNA Sequencing Identifies Polyadenylation Elongation and Differential Transcript Usage of Host Transcripts During SARS-CoV-2 In Vitro Infection. Frontiers in Immunology, 2022, 13, 832223.	2.2	9
185	A Supervised Statistical Learning Approach for Accurate Legionella pneumophila Source Attribution during Outbreaks. Applied and Environmental Microbiology, 2017, 83, .	1.4	8
186	Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance. MSphere, 2019, 4, .	1.3	8
187	Multi-Omic Analysis of Symbiotic Bacteria Associated With Aedes aegypti Breeding Sites. Frontiers in Microbiology, 2021, 12, 703711.	1.5	8
188	Comparative Transcriptomic and Functional Assessments of Linezolid-Responsive Small RNA Genes in Staphylococcus aureus. MSystems, 2020, 5, .	1.7	7
189	Inhibition of the master regulator of Listeria monocytogenes virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages. PLoS Pathogens, 2022, 18, e1010166.	2.1	7
190	Changes in protein abundance are observed in bacterial isolates from a natural host. Frontiers in Cellular and Infection Microbiology, 2015, 5, 71.	1.8	6
191	In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera. PLoS Neglected Tropical Diseases, 2021, 15, e0009636.	1.3	6
192	Low-Cost, Open-Source Device for High-Performance Fluorescence Detection of Isothermal Nucleic Acid Amplification Reactions. ACS Biomaterials Science and Engineering, 2021, 7, 4982-4990.	2.6	6
193	IFN- \hat{l}^3 and IL-5 whole blood response directed against mycolactone polyketide synthase domains in patients with < i>Mycobacterium ulcerans < /i>i>infection. PeerJ, 2018, 6, e5294.	0.9	6
194	Possum bites man: case of Buruli ulcer following possum bite. Medical Journal of Australia, 2022, 216, 452-453.	0.8	6
195	Staphylococcus aureus specific lung resident memory CD4+ Th1 cells attenuate the severity of influenza virus induced secondary bacterial pneumonia. Mucosal Immunology, 0 , , .	2.7	6
196	Leprosy in red squirrels. Science, 2016, 354, 702-703.	6.0	5
197	Genomic investigation of Staphylococcus aureus recovered from Gambian women and newborns following an oral dose of intra-partum azithromycin. Journal of Antimicrobial Chemotherapy, 2019, 74, 3170-3178.	1.3	5
198	Introduction of Mycobacterium ulcerans disease in the Bankim Health District of Cameroon follows damming of the Mapé River. PLoS Neglected Tropical Diseases, 2020, 14, e0008501.	1.3	5

#	Article	IF	CITATIONS
199	Australian Enterococcal Sepsis Outcome Programme annual report, 2013. Communicable Diseases Intelligence, 2014, 38, E320-6.	0.5	5
200	Low incidence of recurrent Buruli ulcers in treated Australian patients living in an endemic region. PLoS Neglected Tropical Diseases, 2018, 12, e0006724.	1.3	4
201	Lab-in-a-van: Rapid SARS-CoV-2 testing response with a mobile laboratory. EBioMedicine, 2022, 79, 103983.	2.7	4
202	Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium. MSystems, 2020, 5, .	1.7	3
203	Accessible Platform for High-Throughput COVID-19 Molecular Diagnostics and Genome Sequencing Using a Repurposed 3D Printer for RNA Extraction. ACS Biomaterials Science and Engineering, 2021, 7, 4669-4676.	2.6	3
204	Population Genomics and Molecular Epidemiology of Mycobacterium ulcerans., 2019,, 107-115.		3
205	Mycobacterial Pathogenomics and Evolution. , 0, , 27-47.		3
206	The $\hat{I} BT1$ large serine recombinase catalyzes DNA integration at pseudo- <i>attB</i> sites in the genus <i>Nocardia</i> . PeerJ, 2018, 6, e4784.	0.9	3
207	Australian Enterococcal Sepsis Outcome Progamme, 2011. Communicable Diseases Intelligence, 2014, 38, E247-52.	0.5	3
208	Detection of Chimeric Cellular: HIV mRNAs Generated Through Aberrant Splicing in HIV-1 Latently Infected Resting CD4+ T Cells. Frontiers in Cellular and Infection Microbiology, 2022, 12, 855290.	1.8	3
209	Antimicrobial tolerance and its role in the development of resistance: Lessons from enterococci. Advances in Microbial Physiology, 2022, , .	1.0	3
210	Biosynthesis and Etherâ€Bridge Formation in Nargenicin Macrolides. Angewandte Chemie, 2019, 131, 4036-4041.	1.6	2
211	Mining Symbionts of a Spiderâ€Transmitted Fungus Illuminates Uncharted Biosynthetic Pathways to Cytotoxic Benzolactones. Angewandte Chemie, 2020, 132, 7840-7845.	1.6	2
212	Reducing mosquito-borne disease transmission to humans: A systematic review of cluster randomised controlled studies that assess interventions other than non-targeted insecticide. PLoS Neglected Tropical Diseases, 2021, 15, e0009601.	1.3	2
213	Buruli ulcers in a Spanish aid worker after a stay in Peru. International Journal of Infectious Diseases, 2019, 78, 99-102.	1.5	1
214	The Mycolactones: Biologically Active Polyketides Produced by Mycobacterium ulcerans and Related Aquatic Mycobacteria., 0,, 367-377.		1
215	Feasibility of a refurbished shipping container as a transportable laboratory for rapid SARS-CoV-2 diagnostics. Access Microbiology, 2022, 4, .	0.2	1
216	Reply to "Internet-Based Solutions for Analysis of Next-Generation Sequence Data― Journal of Clinical Microbiology, 2013, 51, 3163-3163.	1.8	0

#	Article	IF	CITATIONS
217	A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Molecular Microbiology, 2014, 94, 742-742.	1.2	0
218	Comment on: Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. Journal of Antimicrobial Chemotherapy, 2017, 72, 635.2-636.	1.3	0
219	The Mycobacteria: a Postgenomic View. , 0, , 49-89.		O
220	Title is missing!. , 2020, 16, e1008287.		0
221	Title is missing!. , 2020, 16, e1008287.		O
222	Title is missing!. , 2020, 16, e1008287.		0
223	Title is missing!. , 2020, 16, e1008287.		0