Franã§ois Stricher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7252579/publications.pdf

Version: 2024-02-01

32 papers

5,635 citations

236612 25 h-index 433756 31 g-index

32 all docs 32 docs citations

times ranked

32

8668 citing authors

#	Article	IF	CITATIONS
1	Directed evolution of prenylated FMN-dependent Fdc supports efficient in vivo isobutene production. Nature Communications, 2021, 12, 5300.	5.8	11
2	Production of unstable proteins through the formation of stable core complexes. Nature Communications, 2016, 7, 10932.	5.8	9
3	Engineering of weak helper interactions for high-efficiency FRET probes. Nature Methods, 2013, 10, 1021-1027.	9.0	62
4	HSPA8/HSC70 chaperone protein. Autophagy, 2013, 9, 1937-1954.	4.3	307
5	E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary Diffuse Gastric Cancer. PLoS ONE, 2012, 7, e33783.	1.1	53
6	Analysis of Disease-Linked Rhodopsin Mutations Based on Structure, Function, and Protein Stability Calculations. Journal of Molecular Biology, 2011, 405, 584-606.	2.0	86
7	Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Research, 2011, 39, 729-743.	6.5	63
8	A graphical interface for the FoldX forcefield. Bioinformatics, 2011, 27, 1711-1712.	1.8	288
9	BriX: a database of protein building blocks for structural analysis, modeling and design. Nucleic Acids Research, 2011, 39, D435-D442.	6.5	48
10	Modeling protein-peptide interactions using protein fragments: fitting the pieces?. BMC Bioinformatics, 2010, 11 , .	1.2	1
11	Using protein design algorithms to understand the molecular basis of disease caused by protein–DNA interactions: the Pax6 example. Nucleic Acids Research, 2010, 38, 7422-7431.	6.5	55
12	PepX: a structural database of non-redundant protein–peptide complexes. Nucleic Acids Research, 2010, 38, D545-D551.	6.5	102
13	T-RMSD: A Fine-grained, Structure-based Classification Method and its Application to the Functional Characterization of TNF Receptors. Journal of Molecular Biology, 2010, 400, 605-617.	2.0	5
14	Protein-Peptide Interactions Adopt the Same Structural Motifs as Monomeric Protein Folds. Structure, 2009, 17, 1128-1136.	1.6	79
15	Protein design in biological networks: from manipulating the input to modifying the output. Protein Engineering, Design and Selection, 2009, 22, 537-542.	1.0	24
16	Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure. BMC Structural Biology, 2008, 8, 43.	2.3	33
	<u></u>		
17	Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature, 2008, 456, 107-111.	13.7	150

#	Article	IF	CITATIONS
19	Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Research, 2008, 36, 2163-2173.	6.5	49
20	Genome-Wide Prediction of SH2 Domain Targets Using Structural Information and the FoldX Algorithm. PLoS Computational Biology, 2008, 4, e1000052.	1.5	39
21	Reconstruction of Protein Backbones from the BriX Collection of Canonical Protein Fragments. PLoS Computational Biology, 2008, 4, e1000083.	1.5	42
22	How Protein Stability and New Functions Trade Off. PLoS Computational Biology, 2008, 4, e1000002.	1.5	468
23	The Stability Effects of Protein Mutations Appear to be Universally Distributed. Journal of Molecular Biology, 2007, 369, 1318-1332.	2.0	396
24	Predicted Effects of Missense Mutations on Native-State Stability Account for Phenotypic Outcome in Phenylketonuria, a Paradigm of Misfolding Diseases. American Journal of Human Genetics, 2007, 81, 1006-1024.	2.6	157
25	Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets. Journal of Molecular Biology, 2006, 355, 443-458.	2.0	175
26	Design of Miniproteins by the Transfer of Active Sites Onto Small-Size Scaffolds. , 2006, 340, 113-150.		7
27	A high-throughput fluorescence polarization assay specific to the CD4 binding site of HIV-1 glycoproteins based on a fluorescein-labelled CD4 mimic. Biochemical Journal, 2005, 390, 29-39.	1.7	22
28	Scorpion-Toxin Mimics of CD4 in Complex with Human Immunodeficiency Virus gp120. Structure, 2005, 13, 755-768.	1.6	107
29	Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10147-10152.	3.3	315
30	The FoldX web server: an online force field. Nucleic Acids Research, 2005, 33, W382-W388.	6.5	2,110
31	SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Research, 2004, 33, D527-D532.	6.5	136
32	Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nature Biotechnology, 2003, 21, 71-76.	9.4	182