
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7252255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNAs and bone metastasis. , 2022, , 457-469.		Ο
2	Impact of Anti-Angiogenic Treatment on Bone Vascularization in a Murine Model of Breast Cancer Bone Metastasis Using Synchrotron Radiation Micro-CT. Cancers, 2022, 14, 3443.	1.7	2
3	Non oding RNAs in bone remodelling and bone metastasis: Mechanisms of action and translational relevance. British Journal of Pharmacology, 2021, 178, 1936-1954.	2.7	24
4	Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis. Cells, 2021, 10, 430.	1.8	14
5	MicroRNAs and Their Roles in Breast Cancer Bone Metastasis. Current Osteoporosis Reports, 2021, 19, 256-263.	1.5	10
6	Bone metastasis: mechanisms, therapies, and biomarkers. Physiological Reviews, 2021, 101, 797-855.	13.1	153
7	Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene, 2021, 40, 1284-1299.	2.6	53
8	Fracture Risk Evaluation of Bone Metastases: A Burning Issue. Cancers, 2021, 13, 5711.	1.7	10
9	Bone metastases. Nature Reviews Disease Primers, 2020, 6, 83.	18.1	246
10	Current and Emerging Bone-Targeted Therapies for The Treatment of Bone Metastases From Solid Tumors. , 2020, , 403-420.		0
11	ERRα Expression in Bone Metastases Leads to an Exacerbated Antitumor Immune Response. Cancer Research, 2020, 80, 2914-2926.	0.4	13
12	Long-Term Exposure of Early-Transformed Human Mammary Cells to Low Doses of Benzo[a]pyrene and/or Bisphenol A Enhances Their Cancerous Phenotype via an AhR/GPR30 Interplay. Frontiers in Oncology, 2020, 10, 712.	1.3	13
13	The CaSR in Pathogenesis of Breast Cancer: A New Target for Early Stage Bone Metastases. Frontiers in Oncology, 2020, 10, 69.	1.3	24
14	The RANK–RANKL axis: an opportunity for drug repurposing in cancer?. Clinical and Translational Oncology, 2019, 21, 977-991.	1.2	31
15	Bone Metastases; Basic Aspects. , 2019, , 304-309.		Ο
16	ERRα promotes breast cancer cell dissemination to bone by increasing RANK expression in primary breast tumors. Oncogene, 2019, 38, 950-964.	2.6	25
17	Bone metastases in the era of targeted treatments: insights from molecular biology. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2019, 63, 98-111.	0.4	8
18	Bone, muscle, and metabolic parameters predict survival in patients with synchronous bone metastases from lung cancers. Bone, 2018, 108, 202-209.	1.4	38

#	Article	IF	CITATIONS
19	Bone-Targeted Therapies in Cancer-Induced Bone Disease. Calcified Tissue International, 2018, 102, 227-250.	1.5	80
20	TMPRSS2:ERG gene fusion expression regulates bone markers and enhances the osteoblastic phenotype of prostate cancer bone metastases. Cancer Letters, 2018, 438, 32-43.	3.2	21
21	miRNA-30 Family Members Inhibit Breast Cancer Invasion, Osteomimicry, and Bone Destruction by Directly Targeting Multiple Bone Metastasis–Associated Genes. Cancer Research, 2018, 78, 5259-5273.	0.4	141
22	Comparative Study of Neoadjuvant Chemotherapy With and Without Zometa for Management of Locally Advanced Breast Cancer With Serum VEGF as Primary Endpoint: The NEOZOL Study. Clinical Breast Cancer, 2018, 18, e1311-e1321.	1.1	8
23	The C-Terminal Intact Forms of Periostin (iPTN) Are Surrogate Markers for Osteolytic Lesions in Experimental Breast Cancer Bone Metastasis. Calcified Tissue International, 2018, 103, 567-580.	1.5	10
24	Physiopathologie des métastases osseuses des tumeurs solides. Revue Du Rhumatisme Monographies, 2017, 84, 107-114.	0.0	1
25	Pathophysiology of bone metastases from solid malignancies. Joint Bone Spine, 2017, 84, 677-684.	0.8	38
26	Lysyl Oxidase Is a Strong Determinant of Tumor Cell Colonization in Bone. Cancer Research, 2017, 77, 268-278.	0.4	55
27	Effect of intra-tibial injection on mechanical properties of mouse bone. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S57-S58.	0.9	2
28	Overexpression of a functional calcium-sensing receptor dramatically increases osteolytic potential of MDA-MB-231 cells in a mouse model of bone metastasis through epiregulin-mediated osteoprotegerin downregulation. Oncotarget, 2017, 8, 56460-56472.	0.8	21
29	Cancer Cell Colonisation in the Bone Microenvironment. International Journal of Molecular Sciences, 2016, 17, 1674.	1.8	80
30	The role of osteoclasts in breast cancer bone metastasis. Journal of Bone Oncology, 2016, 5, 93-95.	1.0	72
31	Unseeded Inertial Cavitation for Enhancing the Delivery ofÂChemotherapies: A Safety Study. Ultrasound in Medicine and Biology, 2016, 42, 220-231.	0.7	16
32	Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel. Annals of Oncology, 2016, 27, 379-390.	0.6	165
33	Abstract P6-13-19: Adding zoledronic acid to neo-adjuvant chemotherapy may improve the efficiency of chemotherapy in locally advanced breast cancer: Results from the prospective randomized study NEOZOL. , 2016, , .		1
34	Estrogen related receptor alpha in castration-resistant prostate cancer cells promotes tumor progression in bone. Oncotarget, 2016, 7, 77071-77086.	0.8	29
35	Low-intensity continuous ultrasound triggers effective bisphosphonate anticancer activity in breast cancer. Scientific Reports, 2015, 5, 16354.	1.6	14
36	Adjuvant bisphosphonates in patients with breast cancer: does the potency matter?. Future Oncology, 2015, 11, 2853-2856.	1.1	3

#	Article	IF	CITATIONS
37	Emerging therapies in bone metastasis. Current Opinion in Pharmacology, 2015, 22, 79-86.	1.7	28
38	Tumour-derived miRNAs and bone metastasis. BoneKEy Reports, 2015, 4, 688.	2.7	36
39	MicroRNA-mediated regulation of bone metastasis formation: from primary tumors to skeleton. , 2015, , 479-489.		6
40	Bone antiresorptive agents in the treatment of bone metastases associated with solid tumours or multiple myeloma. BoneKEy Reports, 2015, 4, 744.	2.7	15
41	Low-Intensity Ultrasound Promotes Clathrin-Dependent Endocytosis for Drug Penetration into Tumor Cells. Ultrasound in Medicine and Biology, 2015, 41, 2740-2754.	0.7	24
42	Upregulation of the mevalonate pathway by cholesterol depletion abolishes tolerance to N-bisphosphonate induced Vγ9VΠ2 T cell cytotoxicity in PC-3 prostate cancer cells. Cancer Letters, 2015, 357, 279-285.	3.2	11
43	The LPA1/ZEB1/miR-21-activation pathway regulates metastasis in basal breast cancer. Oncotarget, 2015, 6, 20604-20620.	0.8	56
44	Identification of Heparin-Binding EGF-Like Growth Factor (HB-EGF) as a Biomarker for Lysophosphatidic Acid Receptor Type 1 (LPA1) Activation in Human Breast and Prostate Cancers. PLoS ONE, 2014, 9, e97771.	1.1	24
45	562 Lysophosphatidic acid-induced breast cancer metastasis depends on LPA1/ZEB1/miR-21-activation pathway. European Journal of Cancer, 2014, 50, 182.	1.3	Ο
46	Combination of anti-angiogenic therapies reduces osteolysis and tumor burden in experimental breast cancer bone metastasis. International Journal of Cancer, 2014, 135, 1319-1329.	2.3	21
47	Mutational profiling of bone metastases from lung adenocarcinoma: results of a prospective study (POUMOS-TEC). BoneKEy Reports, 2014, 3, 580.	2.7	31
48	Lysophosphatidic Acid Receptor Type 1 (LPA1) Plays a Functional Role in Osteoclast Differentiation and Bone Resorption Activity. Journal of Biological Chemistry, 2014, 289, 6551-6564.	1.6	48
49	TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3870-9.	3.3	90
50	<i>TWIST1</i> Expression in Breast Cancer Cells Facilitates Bone Metastasis Formation. Journal of Bone and Mineral Research, 2014, 29, 1886-1899.	3.1	63
51	Interaction of platelet-derived autotaxin with tumor integrin αVβ3 controls metastasis of breast cancer cells to bone. Blood, 2014, 124, 3141-3150.	0.6	136
52	Abstract 1448: Disseminated tumor cell formation promoted by lysophosphatidic acid (LPA) involves ZEB1/miR21-dependent activation pathway. , 2014, , .		1
53	Peroxiredoxin 2 specifically regulates the oxidative and metabolic stress response of human metastatic breast cancer cells in lungs. Oncogene, 2013, 32, 724-735.	2.6	100
54	Mechanisms of action of bisphosphonates in oncology: a scientific concept evolving from antiresorptive to anticancer activities. BoneKEy Reports, 2013, 2, 267.	2.7	67

#	Article	IF	CITATIONS
55	A Transcriptome-proteome Integrated Network Identifies Endoplasmic Reticulum thiol oxidoreductase (ERp57) as a Hub that Mediates Bone Metastasis. Molecular and Cellular Proteomics, 2013, 12, 2111-2125.	2.5	32
56	Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression. Prostate, 2013, 73, 1738-1746.	1.2	31
57	A New Murine Model of Osteoblastic/Osteolytic Lesions from Human Androgen-Resistant Prostate Cancer. PLoS ONE, 2013, 8, e75092.	1.1	26
58	Abstract P5-04-13: Antibody-based therapy targeting integrin a5 is an effective strategy to treat experimental breast cancer bone metastasis. , 2013, , .		0
59	Bioluminescence Imaging of Prenylation Inhibition–Letter. Clinical Cancer Research, 2012, 18, 6077-6077.	3.2	Ο
60	<i>In Vivo</i> Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Trigger Vγ9Vδ2 T-cell Antitumor Cytotoxicity through ICAM-1 Engagement. Clinical Cancer Research, 2012, 18, 6249-6259.	3.2	46
61	Potential Anticancer Properties of Bisphosphonates: Insights From Preclinical Studies. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 102-113.	0.9	26
62	Effects of Bone-Targeted Agents on Cancer Progression and Mortality. Journal of the National Cancer Institute, 2012, 104, 1059-1067.	3.0	171
63	Differential proteomic analysis of a human breast tumor and its matched bone metastasis identifies cell membrane and extracellular proteins associated with bone metastasis. Journal of Proteome Research, 2012, 11, 2247-2260.	1.8	23
64	RANK/RANKL pathway in cancer: Biological activity beyond bone?. Journal of Bone Oncology, 2012, 1, 67-68.	1.0	2
65	Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. British Journal of Cancer, 2012, 107, 63-70.	2.9	70
66	Direct and indirect anticancer activity of bisphosphonates: A brief review of published literature. Cancer Treatment Reviews, 2012, 38, 407-415.	3.4	147
67	Targeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis. International Journal of Oncology, 2012, 40, 1133-1141.	1.4	55
68	Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate, 2012, 72, 713-720.	1.2	54
69	Overexpression of CD9 in human breast cancer cells promotes the development of bone metastases. Anticancer Research, 2012, 32, 5211-20.	0.5	37
70	5007 ORAL The MicroRNAs-30 Family Interferes With the Formation of Breast Cancer Bone Metastases by Targeting Osteomimetic Genes. European Journal of Cancer, 2011, 47, S332.	1.3	0
71	Bisphosphonates' antitumor activity: An unravelled side of a multifaceted drug class. Bone, 2011, 48, 71-79.	1.4	148
72	Nitrogen-containing bisphosphonates can inhibit angiogenesis in vivo without the involvement of farnesyl pyrophosphate synthase. Bone, 2011, 48, 259-266.	1.4	81

#	Article	IF	CITATIONS
73	Zoledronic acid induces IPP accumulation and release from human cancer cells, which activates Vγ9Vδ2 T cell-differentiation and migration in vitro and mediates Vγ9Vδ2 T cell-induced cancer cell death in vivo. Bone, 2011, 48, S46.	1.4	0
74	Bisphosphonates in preclinical bone oncology. Bone, 2011, 49, 66-70.	1.4	48
75	1074 POSTER Effects of Zoledronic Acid and Denosumab on Human Vy9V62 T-cell-Mediated Cell Death of RANK-Expressing Breast Cancer Cells. European Journal of Cancer, 2011, 47, S117.	1.3	2
76	Therapeutic targets for bone metastases in breast cancer. Breast Cancer Research, 2011, 13, 207.	2.2	97
77	Receptor Activator of NF-kB (RANK) Expression in Primary Tumors Associates with Bone Metastasis Occurrence in Breast Cancer Patients. PLoS ONE, 2011, 6, e19234.	1.1	157
78	Increased expression and serum levels of the stromal cellâ€secreted protein periostin in breast cancer bone metastases. International Journal of Cancer, 2011, 128, 352-360.	2.3	79
79	High Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Promote Vγ9Vδ2 T-Cell Chemotaxis and Cytotoxicity <i>In Vivo</i> . Cancer Research, 2011, 71, 4562-4572.	0.4	134
80	Clinical and basic research papers – February 2011. IBMS BoneKEy, 2011, 8, 65-73.	0.1	0
81	Clinical and basic research papers – July 2011. IBMS BoneKEy, 2011, 8, 305-312.	0.1	0
82	Clinical and basic research papers – November-December 2011. IBMS BoneKEy, 2011, 8, 305-312.	0.1	0
83	Can bisphosphonates really reduce the risk of recurrences in early breast cancer?. IBMS BoneKEy, 2011, 8, 159-164.	0.1	1
84	Clinical and basic research papers – September 2011. IBMS BoneKEy, 2011, 8, 390-396.	0.1	0
85	Dual Function of ERRα in Breast Cancer and Bone Metastasis Formation: Implication of VEGF and Osteoprotegerin. Cancer Research, 2011, 71, 5728-5738.	0.4	68
86	The HIF-1–Inducible Lysyl Oxidase Activates HIF-1 via the Akt Pathway in a Positive Regulation Loop and Synergizes with HIF-1 in Promoting Tumor Cell Growth. Cancer Research, 2011, 71, 1647-1657.	0.4	132
87	Clinical and basic research papers – October 2011. IBMS BoneKEy, 2011, 8, 428-432.	0.1	0
88	Nitrogen-Containing Bisphosphonates and Cancer Immunotherapy. Current Pharmaceutical Design, 2010, 16, 3007-3014.	0.9	35
89	Editorial [Hot-topic: Molecularly Targeted Therapies in Breast Cancer Bone Metastases (Executive) Tj ETQq1 1	0.784314 r 0.9	gBŢ /Overlock
90	Platelet-Osteosarcoma Cell Interaction is Mediated Through a Specific Fibrinogen-Binding Sequence Located Within the N-Terminal Domain of Thrombospondin 1. Journal of Bone and Mineral Research, 2010, 15, 361-368.	3.1	15

#	Article	IF	CITATIONS
91	Development of a New ELISA for Serum Periostin: Evaluation of Growth-Related Changes and Bisphosphonate Treatment in Mice. Calcified Tissue International, 2010, 87, 341-350.	1.5	23
92	The Molecular Basis of Bisphosphonate Activity: A Preclinical Perspective. Seminars in Oncology, 2010, 37, S3-S11.	0.8	38
93	Early Bone Metastasis-Associated Molecular and Cellular Events. , 2010, , 41-45.		2
94	Involvement of the Slit2/Robo1 Pathway in Breast Cancer Bone Metastasis. Bone, 2010, 46, S37.	1.4	0
95	Zoledronic acid induces IPP release from cancer cells which causes Vgamma9Vdelta2 T cell expansion in PBMCs. Bone, 2010, 46, S40-S41.	1.4	0
96	Expression of lyosophospholipase D/autotaxin by breast cancer cells controls bone metastasis formation by increasing osteoclast differentiation. Bone, 2010, 46, S41.	1.4	1
97	Frequent Intermittent Low-dose Therapy Accentuates the Antitumour Activity of the Bisphosphonate Risedronate In Vivo. Bone, 2010, 46, S43.	1.4	0
98	Metastasis and bone loss: Advancing treatment and prevention. Cancer Treatment Reviews, 2010, 36, 615-620.	3.4	121
99	How Do Bisphosphonates Inhibit Bone Metastasis In Vivo. Neoplasia, 2010, 12, 571-578.	2.3	59
100	Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse through Lysophosphatidic Acid-Dependent Activation of Osteoclasts. PLoS ONE, 2010, 5, e9741.	1.1	101
101	Integrins in Bone Metastasis Formation and Potential Therapeutic Implications. Current Cancer Drug Targets, 2009, 9, 801-806.	0.8	36
102	Insights into the antitumor effects of bisphosphonates from preclinical models and potential clinical implications. IBMS BoneKEy, 2009, 6, 210-217.	0.1	4
103	Physiopathologie des métastases osseuses. Oncologie, 2009, 11, 10-15.	0.2	0
104	Platelet is a major contributor to circulating levels of Dickkopfâ€1: clinical implications in patients with multiple myeloma. British Journal of Haematology, 2009, 145, 264-266.	1.2	49
105	Nanostructured polyelectrolyte multilayer drug delivery systems for bone metastasis prevention. Biomaterials, 2009, 30, 6367-6373.	5.7	40
106	Development of a new ELISA for serum periostin: Growth-related changes and effects of bisphosphonate in mice. Bone, 2009, 44, S270.	1.4	0
107	Bioactive Lipids Lysophosphatidic Acid and Sphingosine 1-Phosphate Mediate Breast Cancer Cell Biological Functions Through Distinct Mechanisms. Oncology Research, 2009, 18, 173-184.	0.6	41
108	A convenient clinically relevant model of human breast cancer bone metastasis. Clinical and Experimental Metastasis, 2008, 25, 33-42.	1.7	30

#	Article	IF	CITATIONS
109	Pathogénie des métastases osseuses. Revue Du Rhumatisme (Edition Francaise), 2008, 75, 327-331.	0.0	0
110	Cathepsin K inhibitors as treatment of bone metastasis. Current Opinion in Supportive and Palliative Care, 2008, 2, 218-222.	0.5	71
111	Cell Membrane Proteomic Analysis Identifies Proteins Differentially Expressed in Osteotropic Human Breast Cancer Cells. Neoplasia, 2008, 10, 1014-IN11.	2.3	31
112	Differential Effect of Doxorubicin and Zoledronic Acid on Intraosseous versus Extraosseous Breast Tumor Growth <i>In vivo</i> . Clinical Cancer Research, 2008, 14, 4658-4666.	3.2	90
113	P20. Autotaxin promotes metastasis dissemination of breast cancer cells. Cancer Treatment Reviews, 2008, 34, 20-21.	3.4	Ο
114	P49. Zoledronic acid-induced IPP accumulation in cancer cells strongly correlates with γδT-cell mediated cancer cell death. Cancer Treatment Reviews, 2008, 34, 37.	3.4	50
115	P56. Targeting VEGF and its receptors in the treatment of breast cancer bone metastases. Cancer Treatment Reviews, 2008, 34, 41.	3.4	Ο
116	P57. Manipulating the bone mineral affinity of bisphosphonates to directly target cancer cells in the bone marrow. Cancer Treatment Reviews, 2008, 34, 42.	3.4	0
117	Lowering Bone Mineral Affinity of Bisphosphonates as a Therapeutic Strategy to Optimize Skeletal Tumor Growth Inhibition <i>In vivo</i> . Cancer Research, 2008, 68, 8945-8953.	0.4	42
118	A Cathepsin K Inhibitor Reduces Breast Cancer–Induced Osteolysis and Skeletal Tumor Burden. Cancer Research, 2007, 67, 9894-9902.	0.4	180
119	Bone Morphogenetic Protein 7 in the Development and Treatment of Bone Metastases from Breast Cancer. Cancer Research, 2007, 67, 8742-8751.	0.4	188
120	Tumor αvβ3 Integrin Is a Therapeutic Target for Breast Cancer Bone Metastases. Cancer Research, 2007, 67, 5821-5830.	0.4	186
121	Antitumor Effects of Clinical Dosing Regimens of Bisphosphonates in Experimental Breast Cancer Bone Metastasis. Journal of the National Cancer Institute, 2007, 99, 322-330.	3.0	213
122	International society of geriatric oncology (SIOG) clinical practice recommendations for the use of bisphosphonates in elderly patients. European Journal of Cancer, 2007, 43, 852-858.	1.3	83
123	Frequent low-dose bisphosphonate therapy. Bone, 2007, 41, 901-902.	1.4	2
124	Bisphosphonates in cancer therapy. Cancer Letters, 2007, 257, 16-35.	3.2	183
125	1302 POSTER Updated International Society of Geriatric Oncology (SIOG) recommendations for the use of bisphosphonates in elderly cancer patients with bone metastases. European Journal of Cancer, Supplement, 2007, 5, 174.	2.2	0
126	Increased Dickkopf-1 expression in breast cancer bone metastases. British Journal of Cancer, 2007, 97, 964-970.	2.9	159

#	Article	IF	CITATIONS
127	Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Research and Treatment, 2007, 101, 135-148.	1.1	105
128	Bone metastasis: pathogenesis and therapeutic implications. Clinical and Experimental Metastasis, 2007, 24, 599-608.	1.7	132
129	Advances in optical imaging and novel model systems for cancer metastasis research. Clinical and Experimental Metastasis, 2007, 24, 699-705.	1.7	50
130	Continuous or repeated intermittent low-dose therapy with zoledronic acid induces a sustained inhibition of tumor cell trafficking to bone in vivo. Bone, 2006, 38, 44-45.	1.4	1
131	A cathepsin k inhibitor (alone or in combination with zoledronic acid) inhibits the progression of breast cancer bone metastases. Bone, 2006, 38, 55-56.	1.4	1
132	Antitumour Effects of Bisphosphonates. , 2006, , 345-350.		0
133	Transmigration: A New Property of Mature Multinucleated Osteoclasts. Journal of Bone and Mineral Research, 2006, 21, 1913-1923.	3.1	34
134	Expression and localisation of αv integrins in human odontoblasts. Cell and Tissue Research, 2006, 323, 457-463.	1.5	22
135	The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9643-9648.	3.3	185
136	Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1in vivo. International Journal of Cancer, 2005, 116, 686-691.	2.3	62
137	Bisphosphonates and Cancer-Induced Bone Disease: Beyond Their Antiresorptive Activity: Figure 1 Cancer Research, 2005, 65, 4971-4974.	0.4	217
138	Anti-tumour activity of zoledronic acid. Cancer Treatment Reviews, 2005, 31, 1-8.	3.4	86
139	Androgens repress the expression of the angiogenesis inhibitor thrombospondin-1 in normal and neoplastic prostate. Cancer Research, 2005, 65, 300-8.	0.4	52
140	Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. Journal of Clinical Investigation, 2004, 114, 1714-1725.	3.9	340
141	Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. Journal of Clinical Investigation, 2004, 114, 1714-1725.	3.9	222
142	Angiostatin Inhibits Bone Metastasis Formation in Nude Mice through a Direct Anti-osteoclastic Activity. Journal of Biological Chemistry, 2003, 278, 45826-45832.	1.6	81
143	In Vitro and In Vivo Antitumor Effects of Bisphosphonates. Current Medicinal Chemistry, 2003, 10, 173-180.	1.2	80
144	SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Research, 2003, 63, 3919-22.	0.4	198

#	Article	IF	CITATIONS
145	Integrin $\hat{I} \pm v \hat{I}^2 3$ expression confers on tumor cells a greater propensity to metastasize to bone. FASEB Journal, 2002, 16, 1266-1268.	0.2	215
146	Mechanisms of Bisphosphonate Effects on Osteoclasts, Tumor Cell Growth, and Metastasis. American Journal of Clinical Oncology: Cancer Clinical Trials, 2002, 25, S3-S9.	0.6	110
147	The antitumor potential of bisphosphonates. Seminars in Oncology, 2002, 29, 33-42.	0.8	100
148	Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Research, 2002, 62, 6538-44.	0.4	421
149	Early Detection of Bone Metastases in a Murine Model Using Fluorescent Human Breast Cancer Cells: Application to the Use of the Bisphosphonate Zoledronic Acid in the Treatment of Osteolytic Lesions. Journal of Bone and Mineral Research, 2001, 16, 2027-2034.	3.1	148
150	In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes and Development, 2001, 15, 1373-1382.	2.7	90
151	Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain. , 1999, 75, 538-546.		89
152	Additive antitumor activities of taxoids in combination with the bisphosphonate ibandronate against invasion and adhesion of human breast carcinoma cells to bone. , 1999, 83, 263-269.		78
153	CD36 mediates binding of soluble thrombospondin-1 but not cell adhesion and haptotaxis on immobilized thrombospondin-1. Cell Biochemistry and Function, 1998, 16, 211-221.	1.4	17
154	Recent insights into the role of integrins in cancer metastasis. Cellular and Molecular Life Sciences, 1998, 54, 541-548.	2.4	94
155	Identification of cell adhesive active sites in the N-terminal domain of thrombospondin-1. Biochemical Journal, 1997, 321, 819-827.	1.7	31
156	Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1. Journal of Cellular Biochemistry, 1997, 67, 75-83.	1.2	65
157	Localization of thrombospondin, CD36 and CD51 during prenatal development of the human mammary gland. Differentiation, 1994, 57, 133-141.	1.0	11
158	Thrombospondin (TSP1) mediates in vitro proliferation of human MG-63 osteoblastic cells induced by α-thrombin. FEBS Letters, 1993, 329, 341-346.	1.3	16
159	The growth-supportive effect of thrombospondin (TSP1) and the expression of TSP1 by human MG-63 osteoblastic cells are both inhibited by dexamethasone. FEBS Letters, 1993, 335, 161-166.	1.3	11
160	Osteonectin is an α-granule component involved with thrombospondin in platelet aggregation. Journal of Bone and Mineral Research, 1991, 6, 1059-1070.	3.1	28
161	Thrombospondin is synthesized and secreted by human osteoblasts and osteosarcoma cells. A model to study the different effects of thrombospondin in cell adhesion. FEBS Journal, 1989, 181, 721-726.	0.2	54
162	Complex formation of human thrombospondin with osteonectin. FEBS Journal, 1988, 175, 275-284.	0.2	81

PHILIPPE CLéZARDIN

#	ARTICLE	IF	CITATIONS
163	Cell attachment and fibrinogen binding properties of platelet and endothelial cell thrombospondin are not affected by structural differences in the 70 and 18 kDa protease-resistant domains. FEBS Letters, 1988, 228, 215-218.	1.3	8
164	Thrombospondin in Milk, Other Breast Secretions, and Breast Tissue. Seminars in Thrombosis and Hemostasis, 1987, 13, 378-384.	1.5	21
165	Production, Characterization, and Use of Monoclonal Antibodies Directed Against Human Blood Platelet Thrombospondin: Immunologic Comparison with Human Endothelial and Fibroblast Thrombospondins. Seminars in Thrombosis and Hemostasis, 1987, 13, 261-275.	1.5	4
166	Structural and immunological differences between human platelet and endothelial thrombospondins. FEBS Letters, 1986, 196, 49-53.	1.3	3
167	Tandem purification of IgM monoclonal antibodies from mouse ascites fluids by anion-exchange and gel fast protein liquid chromatography. Journal of Chromatography A, 1986, 354, 425-433.	1.8	22
168	Tandem purification of mouse IgM monoclonal atibodies produced in vitro using anion-exchange and gel fast protein liquid chromatography. Journal of Chromatography A, 1986, 358, 209-218.	1.8	12
169	Characterization of two murine monoclonal antibodies (P10, P12) directed against different determinants on human blood platelet thrombospondin. FEBS Journal, 1986, 154, 95-102.	0.2	30
170	Structural and immunological comparison of human thrombospondins isolated from platelets and from culture supernatants of endothelial cells and fibroblasts. Evidence for a thrombospondin polymorphism. FEBS Journal, 1986, 159, 569-579.	0.2	21
171	Tandem separation of labelled human blood platelet membrane glycoproteins by anion-exchange and gel fast protein liquid chromatography. Journal of Chromatography A, 1985, 326, 179-190.	1.8	13
172	One-step procedure for the rapid isolation of mouse monoclonal antibodies and their antigen binding fragments by fast protein liquid chromatography on a mono Q anion-exchange column. Journal of Chromatography A, 1985, 319, 67-77.	1.8	78
173	Platelet membrane glycoprotein abnormalities in patients with myeloproliferative disorders and secondary thrombocytosis. British Journal of Haematology, 1985, 60, 331-344.	1.2	63
174	Identification and characterization of fragments of major glycoproteins from platelet membrane after chymotrypsin treatment. FEBS Journal, 1985, 148, 97-106.	0.2	15
175	Isolation of thrombospondin released from thrombinstimulated human platelets by fast protein liquid chromatography on an anion-exchange mono-q column. Journal of Chromatography A, 1984, 296, 249-256.	1.8	42
176	A radioimmunoassay for thrombospondin, used in a comparative study of thrombospondin, β-thromboglobulin and platelet factor 4 in healthy volunteers. Thrombosis Research, 1983, 29, 569-581.	0.8	91
177	Effect of Thrombospondin on Platelet ADP-Induced Aggregation and 125I-Fibrinogen Binding. European Heart Journal, 1983, 4, 5-5.	1.0	0
178	Tryptic peptide map analysis of the major human blood platelet membrane glycoproteins separated by two-dimensional polyacrylamide gel electrophoresis. Biochimica Et Biophysica Acta - Biomembranes, 1982, 689, 513-522.	1.4	13