Mónica Romero-López

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7251838/publications.pdf

Version: 2024-02-01

20 papers 924 citations

623734 14 h-index 18 g-index

20 all docs

20 docs citations

times ranked

20

1803 citing authors

#	Article	IF	CITATIONS
1	Human Mesenchymal Stem Cellâ€Derived Miniature Joint System for Disease Modeling and Drug Testing. Advanced Science, 2022, 9, e2105909.	11.2	22
2	Adipose Tissue-Derived Stem Cells Retain Their Adipocyte Differentiation Potential in Three-Dimensional Hydrogels and Bioreactors. Biomolecules, 2020, 10, 1070.	4.0	24
3	Interleukinâ€4 overexpressing mesenchymal stem cells within <scp>gelatinâ€based</scp> microribbon hydrogels enhance bone healing in a murine long bone criticalâ€size defect model. Journal of Biomedical Materials Research - Part A, 2020, 108, 2240-2250.	4.0	28
4	Macrophage Effects on Mesenchymal Stem Cell Osteogenesis in a Three-Dimensional <i>In Vitro</i> Bone Model. Tissue Engineering - Part A, 2020, 26, 1099-1111.	3.1	31
5	Optimization and Characterization of Calcium Phosphate Transfection in Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2019, 25, 543-552.	2.1	4
6	Treating Titanium Particle-Induced Inflammation with Genetically Modified NF-κB Sensing IL-4 Secreting or Preconditioned Mesenchymal Stem Cells in Vitro. ACS Biomaterials Science and Engineering, 2019, 5, 3032-3038.	5.2	8
7	Osteogenic ability of rat bone marrow concentrate is at least as efficacious as mesenchymal stem cells <i>in vitro</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2500-2506.	3.4	5
8	Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone and Joint Research, 2019, 8, 481-488.	3.6	56
9	Preconditioned or IL4-Secreting Mesenchymal Stem Cells Enhanced Osteogenesis at Different Stages. Tissue Engineering - Part A, 2019, 25, 1096-1103.	3.1	25
10	Trained murine mesenchymal stem cells have antiâ€inflammatory effect on macrophages, but defective regulation on Tâ€cell proliferation. FASEB Journal, 2019, 33, 4203-4211.	0.5	24
11	NFκB sensing ILâ€4 secreting mesenchymal stem cells mitigate the proinflammatory response of macrophages exposed to polyethylene wear particles. Journal of Biomedical Materials Research - Part A, 2018, 106, 2744-2752.	4.0	37
12	Transplanted interleukin-4–secreting mesenchymal stromal cells show extended survival and increased bone mineral density in the murine femur. Cytotherapy, 2018, 20, 1028-1036.	0.7	27
13	Multiscale modeling of glioblastoma. Translational Cancer Research, 2018, 7, S96-S98.	1.0	O
14	3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy. Cancer Research, 2017, 77, 4171-4184.	0.9	35
15	Recapitulating the human tumor microenvironment: Colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials, 2017, 116, 118-129.	11.4	88
16	Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Engineering - Part A, 2016, 22, 1016-1025.	3.1	109
17	Multiscale Modeling of Glioblastoma Suggests that the Partial Disruption of Vessel/Cancer Stem Cell Crosstalk Can Promote Tumor Regression without Increasing Invasiveness. IEEE Transactions on Biomedical Engineering, 2016, 64, 1-1.	4.2	14
18	3D microtumors in vitro supported by perfused vascular networks. Scientific Reports, 2016, 6, 31589.	3.3	301

#	Article	IF	CITATIONS
19	Angiogenic sprouting is regulated by endothelial cell expression of Slug (Snai2). Journal of Cell Science, 2014, 127, 2017-28.	2.0	85
20	Angiogenic sprouting is regulated by endothelial cell expression of Slug. Development (Cambridge), 2014, 141, e1105-e1105.	2.5	1