Yao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7251477/publications.pdf

Version: 2024-02-01

218677 276875 3,900 43 26 41 citations h-index g-index papers 43 43 43 6494 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	High Yield and Packing Density Activated Carbon by One-Step Molecular Level Activation of Hydrophilic Pomelo Peel for Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 060521.	2.9	4
2	Honeycombed activated carbon with greatly increased specific surface by direct activation of glucose for supercapacitors. Journal of Alloys and Compounds, 2021, 883, 160907.	5.5	9
3	Porous double-doped perovskite La0.6Ca0.4Fe0.8Ni0.2O3 nanotubes as highly efficient bifunctional catalysts for lithium-oxygen batteries. Journal of Power Sources, 2020, 468, 228362.	7.8	12
4	Effects of Pore Widening vs Oxygenation on Capacitance of Activated Carbon in Aqueous Sodium Sulfate Electrolyte. Journal of the Electrochemical Society, 2020, 167, 040524.	2.9	7
5	Nanoporous Versus Nanoparticulate Carbonâ€Based Materials for Capacitive Charge Storage. Energy and Environmental Materials, 2020, 3, 247-264.	12.8	36
6	Activated Carbon by One-Step Calcination of Deoxygenated Agar for High Voltage Lithium Ion Supercapacitor. ACS Sustainable Chemistry and Engineering, 2020, 8, 3637-3643.	6.7	31
7	New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1904025-0.	4.9	27
8	Porous nanocubes La 0.9 Co 0.8 Ni 0.2 O 3 â $^{^{\prime}}$ x as efficient catalyst for Li-O2 batteries. Electrochimica Acta, 2019, 327, 135017.	5.2	15
9	An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li–O ₂ batteries. Nanoscale, 2019, 11, 2855-2862.	5.6	26
10	Preparation and formation mechanism of Al-Si/Al2O3 core-shell structured particles fabricated via steam corrosion. Ceramics International, 2019, 45, 13809-13817.	4.8	18
11	Wrinkled Perovskite La 0.9 Mn 0.6 Ni 0.4 O 3â^' δ Nanofibers as Highly Efficient Electrocatalyst for Rechargeable Liâ^'O 2 Batteries. ChemElectroChem, 2019, 6, 5864-5869.	3.4	7
12	Molecular level one-step activation of agar to activated carbon for high performance supercapacitors. Carbon, 2018, 132, 573-579.	10.3	85
13	Redox deposition of birnessite MnO 2 on ZIF-8 derived porous carbon at room temperature for supercapacitor electrodes. Materials Letters, 2018, 216, 123-126.	2.6	12
14	Bifunctional catalyst of well-dispersed RuO2 on NiCo2O4 nanosheets as enhanced cathode for lithium-oxygen batteries. Electrochimica Acta, 2018, 262, 97-106.	5.2	33
15	Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane. Nano Research, 2017, 10, 3811-3816.	10.4	47
16	Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chemical Communications, 2016, 52, 4171-4174.	4.1	120
17	Immobilizing Highly Catalytically Active Noble Metal Nanoparticles on Reduced Graphene Oxide: A Non-Noble Metal Sacrificial Approach. Journal of the American Chemical Society, 2015, 137, 106-109.	13.7	213
18	Threeâ€Dimensionally "Curved―NiO Nanomembranes as Ultrahigh Rate Capability Anodes for Liâ€lon Batteries with Long Cycle Lifetimes. Advanced Energy Materials, 2014, 4, 1300912.	19.5	263

#	Article	IF	CITATIONS
19	On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy and Environmental Science, 2013, 6, 3218.	30.8	314
20	Strainâ€Driven Formation of Multilayer Graphene/GeO ₂ Tubular Nanostructures as Highâ€Capacity and Very Longâ€Life Anodes for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 1269-1274.	19.5	67
21	TiO2 nanotube arrays co-loaded with Au nanoparticles and reduced graphene oxide: Facile synthesis and promising photocatalytic application. Journal of Alloys and Compounds, 2013, 578, 242-248.	5.5	65
22	Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. Science Bulletin, 2012, 57, 3045-3050.	1.7	94
23	Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene. Physical Chemistry Chemical Physics, 2012, 14, 10899.	2.8	23
24	Increased electrochemical properties of ruthenium oxide and graphene/ruthenium oxide hybrid dispersed by polyvinylpyrrolidone. Journal of Alloys and Compounds, 2012, 541, 415-420.	5.5	11
25	One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors. Journal of Alloys and Compounds, 2012, 511, 251-256.	5.5	65
26	High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Advances, 2012, 2, 7747.	3.6	152
27	Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. Journal of Applied Physics, 2012, 111, .	2.5	75
28	An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material. Electrochimica Acta, 2012, 69, 364-370.	5.2	81
29	One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Materials Letters, 2012, 68, 336-339.	2.6	86
30	High power density of graphene-based supercapacitors in ionic liquid electrolytes. Materials Letters, 2012, 68, 475-477.	2.6	28
31	Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO3. Journal of Magnetism and Magnetic Materials, 2012, 324, 2205-2210.	2.3	8
32	High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon, 2011, 49, 573-580.	10.3	620
33	Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. Journal of Power Sources, 2011, 196, 5990-5996.	7.8	528
34	Solution-combustion synthesis of $\hat{l}\mu$ -MnO2 for supercapacitors. Materials Letters, 2010, 64, 61-64.	2.6	66
35	Low-temperature hydrothermal synthesis of \hat{l} ±-MnO2 three-dimensional nanostructures. Materials Letters, 2010, 64, 583-585.	2.6	13
36	Self-template route to MnO2 hollow structures for supercapacitors. Materials Letters, 2010, 64, 1480-1482.	2.6	43

YAO CHEN

#	Article	IF	CITATION
37	Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. Journal of Power Sources, 2010, 195, 3031-3035.	7.8	240
38	Hydrothermal-Reduction Synthesis of Manganese Oxide Nanomaterials for Electrochemical Supercapacitors. Journal of Nanoscience and Nanotechnology, 2010, 10, 7711-7714.	0.9	9
39	Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Materials Chemistry and Physics, 2009, 118, 303-307.	4.0	70
40	Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chemical Communications, 2009, , 4527.	4.1	256
41	TiO2 Mesoporous Thick Films with Large-Pore Structure for Dye-Sensitized Solar Cell. Journal of Nanoscience and Nanotechnology, 2008, 8, 3877-3882.	0.9	14
42	Preparation and Electrochemical Properties of Graphene/MnO ₂ Nanocomposites for Supercapacitors. Key Engineering Materials, 0, 768, 102-108.	0.4	5
43	Building Porous Graphene Architectures for Electrochemical Energy Storage Devices., 0,, 86-108.		2