Gottfried Strasser

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7251134/gottfried-strasser-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

494 8,742 43 73 g-index

705 10,054 3.3 5.62 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
494	Broadband laser-based mid-infrared spectroscopy employing a quantum cascade detector for milk protein analysis. <i>Sensors and Actuators B: Chemical</i> , 2022 , 350, 130873	8.5	4
493	2.7 In quantum cascade detector: Above band gap energy intersubband detection. <i>Applied Physics Letters</i> , 2022 , 120, 071104	3.4	1
492	Silicon integrated terahertz quantum cascade ring laser frequency comb. <i>Applied Physics Letters</i> , 2022 , 120, 091106	3.4	O
491	Structure and mid-infrared optical properties of spin-coated polyethylene films developed for integrated photonics applications. <i>Optical Materials Express</i> , 2022 , 12, 2168	2.6	2
490	Landau level laser. <i>Nature Photonics</i> , 2021 , 15, 875-883	33.9	1
489	Terahertz Intersubband Electroluminescence from Nonpolar m-Plane ZnO Quantum Cascade Structures. <i>ACS Photonics</i> , 2021 , 8, 343-349	6.3	5
488	High-speed interband cascade infrared photodetectors: photo-response saturation by a femtosecond oscillator. <i>Optics Express</i> , 2021 , 29, 14087-14100	3.3	3
487	Comb operation in terahertz quantum cascade ring lasers. <i>Optica</i> , 2021 , 8, 780	8.6	6
486	Engineering the spectral bandwidth of quantum cascade laser frequency combs. <i>Optics Letters</i> , 2021 , 46, 3416-3419	3	7
485	High-speed quantum cascade detector characterized with a mid-infrared femtosecond oscillator. <i>Optics Express</i> , 2021 , 29, 5774-5781	3.3	15
484	Etching of m-plane Zn(Mg)O epitaxial films and its impact on surface leakage currents. <i>Semiconductor Science and Technology</i> , 2021 , 36, 035023	1.8	1
483	Deep learning control of THz QCLs. Optics Express, 2021, 29, 23611-23621	3.3	2
482	Resonant tunneling diodes strongly coupled to the cavity field. <i>Applied Physics Letters</i> , 2020 , 116, 2211	03.4	1
481	In-Phase and Anti-Phase Synchronization in a Laser Frequency Comb. <i>Physical Review Letters</i> , 2020 , 124, 023901	7.4	29
480	Singular charge fluctuations at a magnetic quantum critical point. <i>Science</i> , 2020 , 367, 285-288	33.3	21
479	Continuous-wave operation of vertically emitting ring interband cascade lasers at room temperature. <i>Applied Physics Letters</i> , 2020 , 116, 131101	3.4	6
478	Terahertz optical machine learning for object recognition. APL Photonics, 2020, 5, 126103	5.2	3

(2018-2020)

477	Mode-locked short pulses from an 8 th wavelength semiconductor laser. <i>Nature Communications</i> , 2020 , 11, 5788	17.4	14
476	All-optical adaptive control of quantum cascade random lasers. <i>Nature Communications</i> , 2020 , 11, 5530	17.4	8
475	Superradiant Ensembles of Terahertz Polaritonic Meta-Atoms. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-8	1.8	
474	Thermal-Dynamics Optimization of Terahertz Quantum Cascade Lasers with Different Barrier Compositions. <i>Physical Review Applied</i> , 2020 , 14,	4.3	3
473	Color switching of a terahertz quantum cascade laser. <i>Applied Physics Letters</i> , 2019 , 114, 191104	3.4	4
472	Scattering strength dependence of terahertz random lasers. Journal of Applied Physics, 2019, 125, 1516	1 2 1 .5	1
471	Trap-Related Breakdown and Filamentary Conduction in Carbon Doped GaN. <i>Physica Status Solidi</i> (B): Basic Research, 2019 , 256, 1800527	1.3	7
470	High frequency modulation and (quasi) single-sideband emission of mid-infrared ring and ridge quantum cascade lasers. <i>Optics Express</i> , 2019 , 27, 14716-14724	3.3	7
469	Thermoelectric-cooled terahertz quantum cascade lasers. <i>Optics Express</i> , 2019 , 27, 20688-20693	3.3	22
468	Monolithic frequency comb platform based on interband cascade lasers and detectors. <i>Optica</i> , 2019 , 6, 890	8.6	34
467	Picosecond pulses from a mid-infrared interband cascade laser. <i>Optica</i> , 2019 , 6, 1334	8.6	26
466	Suppression of axial growth by boron incorporation in GaAs nanowires grown by self-catalyzed molecular beam epitaxy. <i>Nanotechnology</i> , 2019 , 30, 065602	3.4	1
465	High-frequency breakdown of the integer quantum Hall effect in GaAs/AlGaAs heterojunctions. <i>Physical Review B</i> , 2019 , 99,	3.3	4
464	Coherent injection locking of quantum cascade laser frequency combs. <i>Nature Photonics</i> , 2019 , 13, 101-	19949	59
463	Influence of Boron Antisite Defects on the Electrical Properties of MBE-Grown GaAs Nanowires. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1800368	1.3	2
462	THz Quantum Cascade Lasers 2018 , 597-624		1
461	Short infrared wavelength quantum cascade detectors based on m-plane ZnO/ZnMgO quantum wells. <i>Applied Physics Letters</i> , 2018 , 113, 251104	3.4	14
460	Evaluation of Material Systems for THz Quantum Cascade Laser Active Regions. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 216, 1800504	1.6	6

459	Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation. <i>ACS Photonics</i> , 2018 , 5, 4687-4693	6.3	16
458	Large-signal modulation in distributed feedback quantum cascade lasers for coherent multiharmonic signal generation. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	O
457	Ring quantum cascade lasers with twisted wavefronts. Scientific Reports, 2018, 8, 7998	4.9	6
456	Lithography-free positioned GaAs nanowire growth with focused ion beam implantation of Ga. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2017 , 35, 011803	1.3	6
455	Incorporation of Sb and As in MBE grown GaAsxSb1☑ layers. <i>APL Materials</i> , 2017 , 5, 035501	5.7	10
454	High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers. <i>ACS Photonics</i> , 2017 , 4, 957-962	6.3	16
453	Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector. <i>ACS Photonics</i> , 2017 , 4, 1225-1231	6.3	28
452	Growth rate dependence of boron incorporation into BxGa1NAs layers. <i>Journal of Crystal Growth</i> , 2017 , 477, 77-81	1.6	10
451	Focused ion beam implantation for the nucleation of self-catalyzed III-V nanowires. <i>Microelectronic Engineering</i> , 2017 , 177, 93-97	2.5	5
450	Substrate-emitting ring interband cascade lasers. <i>Applied Physics Letters</i> , 2017 , 111, 171101	3.4	5
449	Nanoscale engineering of photoelectron processes in quantum well and dot structures for sensing and energy conversion. <i>Journal of Physics: Conference Series</i> , 2017 , 906, 012026	0.3	
448	The limit of quantum cascade detectors: A single period device. <i>Applied Physics Letters</i> , 2017 , 111, 0611	0 <i>3</i> 7.4	9
447	Schottky diode formation in GaAs nanowires by heterogeneous contact deposition. <i>Materials Today: Proceedings</i> , 2017 , 4, 7101-7106	1.4	1
446	Influence of thickness on crystallinity in wafer-scale GaTe nanolayers grown by molecular beam epitaxy. <i>AIP Advances</i> , 2017 , 7, 035113	1.5	20
445	Surface emitting ring quantum cascade lasers for chemical sensing. <i>Optical Engineering</i> , 2017 , 57, 1	1.1	5
444	Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H2S in a CH4 matrix for process analytics. <i>Optics Express</i> , 2016 , 24, 6572-85	3.3	10
443	Effect of barrier recess on transport and electrostatic interface properties of GaN-based normally-off and normally-on metal oxide semiconductor heterostructure field effect transistors. <i>Solid-State Electronics</i> , 2016 , 125, 118-124	1.7	5
442	Measurement of bound states in the continuum by a detector embedded in a photonic crystal. Light: Science and Applications, 2016 , 5, e16147	16.7	57

441	Remote Sensing with Commutable Monolithic Laser and Detector. ACS Photonics, 2016, 3, 1794-1798	6.3	12
440	Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing. <i>Scientific Reports</i> , 2016 , 6, 21795	4.9	27
439	Ring quantum cascade lasers with grating phase shifts and a light collimating dielectric metamaterial for enhanced infrared spectroscopy. <i>Vibrational Spectroscopy</i> , 2016 , 84, 101-105	2.1	3
438	Normally-off GaN-HEMTs with p-type gate: Off-state degradation, forward gate stress and ESD failure. <i>Microelectronics Reliability</i> , 2016 , 58, 177-184	1.2	17
437	Enhanced Crystal Quality of AlxIn1-xAsySb1-y for Terahertz Quantum Cascade Lasers. <i>Photonics</i> , 2016 , 3, 20	2.2	6
436	Random lasers for broadband directional emission. <i>Optica</i> , 2016 , 3, 1035	8.6	61
435	Spectrally resolved far-fields of terahertz quantum cascade lasers. <i>Optics Express</i> , 2016 , 24, 25462-2547	70 3.3	2
434	InAs based terahertz quantum cascade lasers. <i>Applied Physics Letters</i> , 2016 , 108, 011109	3.4	30
433	Far-Infrared Quantum Cascade Lasers Operating in the AlAs Phonon Reststrahlen Band. <i>ACS Photonics</i> , 2016 , 3, 2280-2284	6.3	26
432	Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers. <i>Analyst, The</i> , 2016 , 141, 6202-6207	5	17
431	4.3 In quantum cascade detector in pixel configuration. <i>Optics Express</i> , 2016 , 24, 17041-9	3.3	25
430	Electroluminescence from GaAs/AlGaAs Heterostructures in Strong in-Plane Electric Fields: Evidence for k- and Real-Space Charge Transfer. <i>ACS Photonics</i> , 2015 , 2, 1155-1159	6.3	4
429	Metropolis Monte Carlo based Relaxation of Atomistic III-V Semiconductor Models. <i>IFAC-PapersOnLine</i> , 2015 , 48, 550-555	0.7	
428	High-Voltage Breakdown and the Gunn Effect in GaAs/AlGaAs Nanoconstrictions. <i>IEEE Nanotechnology Magazine</i> , 2015 , 14, 524-530	2.6	2
427	High temperature performances of normally-off p-GaN gate AlGaN/GaN HEMTs on SiC and Si substrates for power applications. <i>Microelectronics Reliability</i> , 2015 , 55, 1687-1691	1.2	17
426	From Photonic Crystal to Subwavelength Micropillar Array Terahertz Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2015 , 21, 780-791	3.8	6
425	Quantum cascade detector utilizing the diagonal-transition scheme for high quality cavities. <i>Optics Express</i> , 2015 , 23, 6283-91	3.3	11
424	Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber. <i>Optica</i> , 2015 , 2, 743	8.6	28

423	Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states. <i>Journal of Applied Physics</i> , 2015 , 117, 024506	2.5	35
422	Terahertz Dynamics of a Topologically Protected State: Quantum Hall Effect Plateaus near the Cyclotron Resonance of a Two-Dimensional Electron Gas. <i>Physical Review Letters</i> , 2015 , 115, 247401	7.4	6
421	The influence of whispering gallery modes on the far field of ring lasers. Scientific Reports, 2015, 5, 166	5 68 .9	10
420	High performance bi-functional quantum cascade laser and detector. <i>Applied Physics Letters</i> , 2015 , 107, 071104	3.4	17
419	Nucleation of Ga droplets on Si and SiOx surfaces. <i>Nanotechnology</i> , 2015 , 26, 315601	3.4	20
418	InAs/AlAsSb based quantum cascade detector. <i>Applied Physics Letters</i> , 2015 , 107, 081107	3.4	28
417	E-mode AlGaN/GaN True-MOS, with high-k ZrO2 gate insulator 2015 ,		1
416	Coupled cavity terahertz quantum cascade lasers with integrated emission monitoring. <i>Optics Express</i> , 2015 , 23, 3581-8	3.3	3
415	Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback. <i>Applied Physics Letters</i> , 2015 , 106, 041101	3.4	6
414	Resonant metamaterial detectors based on THz quantum-cascade structures. <i>Scientific Reports</i> , 2014 , 4, 4269	4.9	27
413	Reversing the pump dependence of a laser at an exceptional point. <i>Nature Communications</i> , 2014 , 5, 4034	17.4	312
412	. IEEE Transactions on Electron Devices, 2014 , 61, 3429-3434	2.9	27
411	Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. <i>Nature Communications</i> , 2014 , 5, 4085	17.4	117
410	All-Electrical Thermal Monitoring of Terahertz Quantum Cascade Lasers. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1470-1473	2.2	3
409	InGaAs/GaAsSb based two-dimensional electron gases. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2014 , 32, 02C104	1.3	3
408	Characterizing intra-exciton Coulomb scattering in terahertz excitations. <i>Applied Physics Letters</i> , 2014 , 105, 201109	3.4	2
407	Quantum cascade lasers with a tilted facet utilizing the inherent polarization purity. <i>Optics Express</i> , 2014 , 22, 26294-301	3.3	5
406	Subwavelength micropillar array terahertz lasers. <i>Optics Express</i> , 2014 , 22, 274-82	3.3	31

405	Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy. <i>Optics Express</i> , 2014 , 22, 2656-64	3.3	16	
404	Grating-based far field modifications of ring quantum cascade lasers. <i>Optics Express</i> , 2014 , 22, 15829-3	6 3.3	11	
403	Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown SiN and Al2O3 in AlGaN/GaN high electron mobility transistors with normally off capability. <i>Applied Physics Letters</i> , 2014 , 104, 113502	3.4	33	
402	On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers. <i>Applied Physics Letters</i> , 2014 , 104, 151105	3.4	13	
401	Magnetic control of Coulomb scattering and terahertz transitions among excitons. <i>Physical Review B</i> , 2014 , 89,	3.3	4	
400	High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet. <i>Applied Physics Letters</i> , 2014 , 104, 051101	3.4	17	
399	Diagonal-transition quantum cascade detector. Applied Physics Letters, 2014, 105, 091108	3.4	32	
398	Plasmonic lens enhanced mid-infrared quantum cascade detector. <i>Applied Physics Letters</i> , 2014 , 105, 171112	3.4	22	
397	Resonant intersubband plasmon induced current in InGaAs quantum wells on GaAs. <i>Applied Physics Letters</i> , 2014 , 104, 122101	3.4		
396	Linearly polarized light from substrate emitting ring cavity quantum cascade lasers. <i>Applied Physics Letters</i> , 2013 , 103, 081101	3.4	17	
395	InGaAs/GaAsSb/InP terahertz quantum cascade lasers. <i>Journal of Infrared, Millimeter, and Terahertz Waves</i> , 2013 , 34, 374-385	2.2	7	
394	Modeling the elastic properties of the ternary IIIIV alloys InGaAs, InAlAs and GaAsSb using Tersoff potentials for binary compounds. <i>Semiconductor Science and Technology</i> , 2013 , 28, 085011	1.8	8	
393	Tunable insulator-quantum Hall transition in a weakly interacting two-dimensional electron system. <i>Nanoscale Research Letters</i> , 2013 , 8, 307	5	3	
392	Current collapse reduction in InAlGaN/GaN high electron mobility transistors by surface treatment of thermally stable ultrathin in situ SiN passivation. <i>Solid-State Electronics</i> , 2013 , 89, 207-211	1.7	9	
391	Ultrastrong coupling of intersubband plasmons and terahertz metamaterials. <i>Applied Physics Letters</i> , 2013 , 103, 201106	3.4	24	
390	Statistics and localisation of vertical breakdown in AlGaN/GaN HEMTs on SiC and Si substrates for power applications. <i>Microelectronics Reliability</i> , 2013 , 53, 1444-1449	1.2	10	
389	Photonic crystal slab quantum cascade detector. <i>Applied Physics Letters</i> , 2013 , 103, 241103	3.4	14	
388	Terahertz Detection With Nanoscale Semiconductor Rectifiers. <i>IEEE Sensors Journal</i> , 2013 , 13, 24-30	4	1	

387	Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides. <i>Applied Physics Letters</i> , 2013 , 102, 231121	3.4	16
386	Dopant migration effects in terahertz quantum cascade lasers. <i>Applied Physics Letters</i> , 2013 , 102, 2011	03 .4	20
385	Probing scattering mechanisms with symmetric quantum cascade lasers. <i>Optics Express</i> , 2013 , 21, 7209	-1553	31
384	Enhanced light output power of quantum cascade lasers from a tilted front facet. <i>Optics Express</i> , 2013 , 21, 15869-77	3.3	9
383	Waveguide saturable absorbers at 1.55 th based on intraband transitions in GaN/AlN QDs. <i>Optics Express</i> , 2013 , 21, 27578-86	3.3	15
382	Towards nanowire-based terahertz quantum cascade lasers: prospects and technological challenges 2013 ,		3
381	Monolithically integrated mid-infrared quantum cascade laser and detector. Sensors, 2013, 13, 2196-20)5 3.8	23
380	High power terahertz quantum cascade lasers with symmetric wafer bonded active regions. <i>Applied Physics Letters</i> , 2013 , 103, 171113	3.4	65
379	Magnetic-field assisted performance of InGaAs/GaAsSb terahertz quantum cascade lasers. <i>Applied Physics Letters</i> , 2013 , 103, 051116	3.4	9
378	Atomistic modeling of bond lengths in random and ordered III-V alloys. <i>Journal of Applied Physics</i> , 2013 , 114, 123508	2.5	4
377	Influence of processing and annealing steps on electrical properties of InAlN/GaN high electron mobility transistor with Al2O3 gate insulation and passivation. <i>Solid-State Electronics</i> , 2012 , 67, 74-78	1.7	14
376	Explanation of threshold voltage scaling in enhancement-mode InAlN/AlNtaN metal oxide semiconductor high electron mobility transistors on Si substrates. <i>Thin Solid Films</i> , 2012 , 520, 6230-623	32 ^{2.2}	16
375	Analyzing Imidazolium Bridging in Nanoparticle Networks Covalently Linked to Silicon Substrates. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 9343-9350	3.8	4
374	Superconducting Microdisk Cavities for THz Quantum Cascade Lasers. <i>IEEE Transactions on Terahertz Science and Technology</i> , 2012 , 2, 550-555	3.4	3
373	Large Rashba effect in GaAsSb/InGaAs RTDs at high temperatures. <i>Journal of the Korean Physical Society</i> , 2012 , 60, 1762-1766	0.6	1
372	High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K. <i>Applied Physics Letters</i> , 2012 , 101, 211117	3.4	43
371	A bi-functional quantum cascade device for same-frequency lasing and detection. <i>Applied Physics Letters</i> , 2012 , 101, 191109	3.4	30
370	Reliability investigation of the degradation of the surface passivation of InAlN/GaN HEMTs using a dual gate structure. <i>Microelectronics Reliability</i> , 2012 , 52, 1812-1815	1.2	9

(2012-2012)

369	Tuning the electro-optical properties of germanium nanowires by tensile strain. <i>Nano Letters</i> , 2012 , 12, 6230-4	11.5	104
368	Gas nitriding and subsequent oxidation of Ti-6Al-4V alloys. Nanoscale Research Letters, 2012, 7, 21	5	16
367	Microcavity-integrated graphene photodetector. Nano Letters, 2012, 12, 2773-7	11.5	623
366	Free-carrier absorption in quantum cascade structures. <i>Physical Review B</i> , 2012 , 85,	3.3	27
365	Optimized photonic crystal design for quantum well infrared photodetectors 2012,		5
364	Insulator, semiclassical oscillations and quantum Hall liquids at low magnetic fields. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 405601	1.8	5
363	Extraordinary transmission in metal hole array-photonic crystal hybrid structures. <i>Optics Express</i> , 2012 , 20, 17174	3.3	7
362	THz quantum cascade lasers with wafer bonded active regions. <i>Optics Express</i> , 2012 , 20, 23832-7	3.3	6
361	Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator. <i>Optics Express</i> , 2012 , 20, 5622-8	3.3	31
360	Random telegraph signal noise in gate current of unstressed and reverse-bias-stressed AlGaN/GaN high electron mobility transistors. <i>Applied Physics Letters</i> , 2012 , 100, 143507	3.4	12
359	Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance. <i>Applied Physics Letters</i> , 2012 , 100, 131113	3.4	21
358	Polaritonic spectroscopy of intersubband transitions. <i>Physical Review B</i> , 2012 , 86,	3.3	17
357	Fano effect due to ponderomotive coupling in intersubband response of semiconductor quantum wells. <i>Physical Review B</i> , 2012 , 86,	3.3	1
356	Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers. <i>Applied Physics Letters</i> , 2012 , 100, 191103	3.4	11
355	Buffer-Related Degradation Aspects of Single and Double-Heterostructure Quantum Well InAlN/GaN High-Electron-Mobility Transistors. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 054102	1.4	2
354	Asymmetrically Doped GaAs/AlGaAs Double-Quantum-Well Structure for Voltage-Tunable Infrared Detection. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 074004	1.4	4
353	Buffer-Related Degradation Aspects of Single and Double-Heterostructure Quantum Well InAlN/GaN High-Electron-Mobility Transistors. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 054102	1.4	13
352	Asymmetrically Doped GaAs/AlGaAs Double-Quantum-Well Structure for Voltage-Tunable Infrared Detection. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 074004	1.4	6

351	2DEG GaN hot electron microbolometers and quantum cascade lasers for THz heterodyne sensing 2011 ,		3
350	Gain and losses in THz quantum cascade laser with metal-metal waveguide. <i>Optics Express</i> , 2011 , 19, 733-8	3.3	36
349	Terahertz meta-atoms coupled to a quantum well intersubband transition. <i>Optics Express</i> , 2011 , 19, 13	70,036	41
348	Higher order modes in photonic crystal slabs. <i>Optics Express</i> , 2011 , 19, 15990-5	3.3	5
347	Terahertz nonlinear optics using intra-excitonic quantum well transitions: Sideband generation and AC Stark splitting. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 859-862	1.3	6
346	AFM-based photocurrent imaging of epitaxial and colloidal QDs. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 426-428		1
345	Layer-by-layer assembly of titania nanoparticles based ionic networks. <i>Chemical Communications</i> , 2011 , 47, 361-3	5.8	15
344	Photonic bandstructure engineering of THz quantum-cascade lasers. <i>Applied Physics Letters</i> , 2011 , 99, 201103	3.4	2
343	Improved InGaAs/GaAsSb quantum cascade laser active region designs. <i>Journal of Modern Optics</i> , 2011 , 58, 2015-2020	1.1	4
342	Si doping of MBE grown bulk GaAsSb on InP. <i>Journal of Crystal Growth</i> , 2011 , 323, 42-44	1.6	10
341	Enhanced Rashba effect in transverse magnetic fields observed on $InGaAs/GaAsSb$ resonant tunneling diodes at temperatures up to T = 180 K. <i>Applied Physics Letters</i> , 2011 , 99, 152107	3.4	7
340	Photonic crystal slab quantum well infrared photodetector. <i>Applied Physics Letters</i> , 2011 , 98, 011105	3.4	51
339	Two-dimensional broadband distributed-feedback quantum cascade laser arrays. <i>Applied Physics Letters</i> , 2011 , 98, 141101	3.4	38
338	Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays. <i>Semiconductor Science and Technology</i> , 2011 , 26, 014019	1.8	5
337	Terahertz active photonic crystals for condensed gas sensing. Sensors, 2011, 11, 6003-14	3.8	26
336	Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers. <i>Nanoscale Research Letters</i> , 2011 , 6, 21	5	17
335	Current transport and barrier height evaluation in Ni/InAlN/GaN Schottky diodes. <i>Applied Physics Letters</i> , 2010 , 96, 223501	3.4	28
334	Strategies toward the realization of two-dimensional broadband and coherent quantum cascade ring laser arrays. <i>Optical Engineering</i> , 2010 , 49, 111113	1.1	3

(2010-2010)

333	Nonparabolicity effects in InGaAs/GaAsSb double barrier resonant tunneling diodes. <i>Journal of Applied Physics</i> , 2010 , 108, 073707	2.5	7
332	Coherent coupling of ring cavity surface emitting quantum cascade lasers. <i>Applied Physics Letters</i> , 2010 , 97, 071103	3.4	3
331	Metal-related gate sinking due to interfacial oxygen layer in Ir/InAlN high electron mobility transistors. <i>Applied Physics Letters</i> , 2010 , 96, 263515	3.4	10
330	Electrical beam steering of Y-coupled quantum cascade lasers. <i>Applied Physics Letters</i> , 2010 , 96, 141113	3.4	6
329	Light induced tuning of quantum cascade lasers. <i>Applied Physics Letters</i> , 2010 , 97, 051106	3.4	3
328	Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers. <i>Applied Physics Letters</i> , 2010 , 96, 031111	3.4	20
327	Intersubband optoelectronics in the InGaAs/GaAsSb material system. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2010 , 28, C3G19-C3G23	1.3	12
326	Characterization of Plasma-Induced Damage of Selectively Recessed GaN/InAlN/AlN/GaN Heterostructures Using SiCl4and SF6. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 116506	1.4	10
325	Nonspin related giant magnetoresistance \$600% in hybrid field-effect transistors with ferromagnetic gates. <i>Applied Physics Letters</i> , 2010 , 97, 063108	3.4	2
324	Optical properties of metal-dielectric-metal microcavities in the THz frequency range. <i>Optics Express</i> , 2010 , 18, 13886-907	3.3	114
323	Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP. <i>Applied Physics Letters</i> , 2010 , 97, 261110	3.4	41
322	Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells. <i>Physical Review Letters</i> , 2010 , 105, 167401	7.4	90
321	High resolution photocurrent imaging by atomic force microscopy on the example of single buried InAs quantum dots. <i>Semiconductor Science and Technology</i> , 2010 , 25, 065010	1.8	13
320	Two-photon spectral hole burning spectroscopy of InAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 2010 , 97, 011903	3.4	1
319	An aluminum-free mid-infrared quantum cascade laser 2010 ,		1
318	Blueshift of intersubband magneto-optical transitions linked to void states of thin barriers in multiple quantum well structures. <i>Physical Review B</i> , 2010 , 82,	3.3	8
317	Ultrastrong light-matter coupling regime with polariton dots. Physical Review Letters, 2010, 105, 19640	27.4	305
316	Proposal and Performance Analysis of Normally Off \$ hbox{n}^{++}\$ GaN/InAlN/AlN/GaN HEMTs With 1-nm-Thick InAlN Barrier. <i>IEEE Transactions on Electron Devices</i> , 2010 , 57, 2144-2154	2.9	26

315	Study of Si implantation into Mg-doped GaN for MOSFETs. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 1964-1966		3
314	Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors. <i>Applied Physics Letters</i> , 2009 , 94, 231117	3.4	5
313	Photonic crystal mode terahertz lasers. <i>Journal of Applied Physics</i> , 2009 , 105, 122404	2.5	1
312	Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells. <i>Applied Physics Letters</i> , 2009 , 94, 241105	3.4	19
311	Modulated reflectance study of InAs quantum dot stacks embedded in GaAs/AlAs superlattice. Journal of Applied Physics, 2009 , 106, 064308	2.5	8
310	Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. <i>Physical Review Letters</i> , 2009 , 102, 186402	7.4	135
309	Fano signatures in the intersubband terahertz response of optically excited semiconductor quantum wells. <i>Physical Review Letters</i> , 2009 , 102, 127403	7.4	22
308	Interface States and Trapping Effects in Al2O3- and ZrO2/InAlN/AlN/GaN Metal D xide B emiconductor Heterostructures. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 090201	1.4	13
307	Midinfrared intersubband absorption in InGaAs/GaAsSb multiple quantum wells. <i>Applied Physics Letters</i> , 2009 , 95, 041102	3.4	13
306	Comparison between NEGF simulation and experimental results of Terahertz quantum cascade lasers 2009 ,		1
305	GaN/AlGaN intersubband optoelectronic devices. New Journal of Physics, 2009, 11, 125023	2.9	71
304	Controlled generation of resonant electron-electron scattering induced current in quantum well structures. <i>Applied Physics Letters</i> , 2009 , 95, 172108	3.4	1
303	Determination of the wurtzite content and orientation distribution of nanowire ensembles. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1206, 113901		
302	InGaAs/GaAsSb Heterostructures: Aluminum-Free Intersubband Devices. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1195, 262		
301	Coherence and beam shaping in quantum cascade lasers 2009,		1
300	Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP. <i>Electronics Letters</i> , 2009 , 45, 1031	1.1	24
299	Atomic force microscopy based room temperature photocurrent-spectroscopy of single subsurface InAs quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 793-796		2
298	Coherent control of ground state excitons in the nonlinear regime within an ensemble of self-assembled InAs quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 6.876-878		2

(2009-2009)

297	Off-state breakdown in InAlN/AlN/GaN high electron mobility transistors. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2009 , 6, S925-S928		14
296	Monolithically integrated UV/IR-photodetectors based on an AlN/GaN-based superlattice grown on an AlGaN buffer layer. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, S818-S821		1
295	Low resistance ohmic contacts annealed at 600 °C on a InAlN/GaN heterostructure with SiCl4-reactive ion etching surface treatment. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, S999-S1002		12
294	Optical study of InAs quantum dot stacks embedded in GaAs/AlAs superlattices. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 2710-2712		1
293	Growth of one-dimensional IIII structures on Si nanowires and pre-treated planar Si surfaces. <i>Journal of Crystal Growth</i> , 2009 , 311, 1859-1862	1.6	5
292	Improving size distribution of InAs quantum dots for intersubband devices. <i>Journal of Crystal Growth</i> , 2009 , 311, 1799-1802	1.6	1
291	Thermally induced voltage shift in capacitanceNoltage characteristics and its relation to oxide/semiconductor interface states in Ni/Al2O3/InAlN/GaN heterostructures. <i>Semiconductor Science and Technology</i> , 2009 , 24, 035008	1.8	37
290	Ultrathin InAlN/AlN Barrier HEMT With High Performance in Normally Off Operation. <i>IEEE Electron Device Letters</i> , 2009 , 30, 1030-1032	4.4	48
289	Intersubband gain-induced dispersion. <i>Optics Letters</i> , 2009 , 34, 208-10	3	5
288	Tree array quantum cascade laser. <i>Optics Express</i> , 2009 , 17, 649-57	3.3	17
288	Tree array quantum cascade laser. <i>Optics Express</i> , 2009 , 17, 649-57 Active photonic crystal terahertz laser. <i>Optics Express</i> , 2009 , 17, 941-6	3.3	17 51
287	Active photonic crystal terahertz laser. <i>Optics Express</i> , 2009 , 17, 941-6	3.3	51
287 286	Active photonic crystal terahertz laser. <i>Optics Express</i> , 2009 , 17, 941-6 Electrically controllable photonic molecule laser. <i>Optics Express</i> , 2009 , 17, 20321-6 Current collapse reduction in InAlN/GaN MOS HEMTs by in situ surface pre-treatment and atomic	3.3	51
287 286 285	Active photonic crystal terahertz laser. <i>Optics Express</i> , 2009 , 17, 941-6 Electrically controllable photonic molecule laser. <i>Optics Express</i> , 2009 , 17, 20321-6 Current collapse reduction in InAlN/GaN MOS HEMTs by in situ surface pre-treatment and atomic layer deposition of ZrO2 high-k gate dielectrics. <i>Electronics Letters</i> , 2009 , 45, 570 Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility	3·3 3·3	51 11 17
287 286 285	Active photonic crystal terahertz laser. <i>Optics Express</i> , 2009 , 17, 941-6 Electrically controllable photonic molecule laser. <i>Optics Express</i> , 2009 , 17, 20321-6 Current collapse reduction in InAlN/GaN MOS HEMTs by in situ surface pre-treatment and atomic layer deposition of ZrO2 high-k gate dielectrics. <i>Electronics Letters</i> , 2009 , 45, 570 Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors. <i>Journal of Applied Physics</i> , 2009 , 106, 124503	3·3 3·3 1.1 2.5	51 11 17 84
287 286 285 284	Active photonic crystal terahertz laser. <i>Optics Express</i> , 2009 , 17, 941-6 Electrically controllable photonic molecule laser. <i>Optics Express</i> , 2009 , 17, 20321-6 Current collapse reduction in InAlN/GaN MOS HEMTs by in situ surface pre-treatment and atomic layer deposition of ZrO2 high-k gate dielectrics. <i>Electronics Letters</i> , 2009 , 45, 570 Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors. <i>Journal of Applied Physics</i> , 2009 , 106, 124503 Vertically emitting terahertz quantum cascade ring lasers. <i>Applied Physics Letters</i> , 2009 , 95, 011120 Fano profile in the intersubband terahertz response of photoexcited GaAs/AlGaAs quantum wells.	3·3 3·3 1.1 2.5	51 11 17 84 37

279	Technology and Performance of InAlN/AlN/GaN HEMTs With Gate Insulation and Current Collapse Suppression Using Zr\$hbox{O}_{bm 2}\$ or Hf \$hbox{O}_{bm 2}\$. IEEE Transactions on Electron Devices, 2008, 55, 937-941	2.9	76
278	Terahertz Quantum Cascade Devices: From Intersubband Transition to Microcavity Laser. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2008 , 14, 307-314	3.8	2
277	Lattice-Matched GaN I hAlN Waveguides at \$lambda=1.55 mu\$m Grown by Metal D rganic Vapor Phase Epitaxy. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 102-104	2.2	21
276	Electrooptical Modulator at Telecommunication Wavelengths Based on GaNAIN Coupled Quantum Wells. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 724-726	2.2	25
275	InAs Quantum Dots on AlxGa1⊠As Surfaces and in an AlxGa1⊠As Matrix 2008 , 62-83		
274	Ultrafast phase-resolved pump-probe measurements on a quantum cascade laser. <i>Applied Physics Letters</i> , 2008 , 93, 151106	3.4	20
273	Low divergence single-mode surface emitting quantum cascade ring lasers. <i>Applied Physics Letters</i> , 2008 , 93, 161101	3.4	36
272	Photocurrent response from photonic crystal defect modes. <i>Optics Express</i> , 2008 , 16, 4797-803	3.3	6
271	Reversible switching of quantum cascade laser-modes using a pH-responsive polymeric cladding as transducer. <i>Optics Express</i> , 2008 , 16, 8557-69	3.3	4
270	Surface emission from episide-down short distributed-feedback quantum cascade lasers. <i>Optics Express</i> , 2008 , 16, 11920-9	3.3	16
269	Monolithically integrated AlGaN/GaN/AlN-based solar-blind ultraviolet and near-infrared detectors. <i>Electronics Letters</i> , 2008 , 44, 986	1.1	14
268	Non-bandgap defect modes in the photoresponse of mid-IR photonic crystal detectors. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 454219	1.8	
267	Ballistic electron attenuation length in titanylphthalocyanine films grown on GaAs. <i>Semiconductor Science and Technology</i> , 2008 , 23, 055008	1.8	1
266	Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding. <i>Applied Physics Letters</i> , 2008 , 92, 051117	3.4	19
265	Grating-coupled surface emitting quantum cascade ring lasers. <i>Applied Physics Letters</i> , 2008 , 93, 01110	83.4	26
264	Two-color pump-probe studies of intraminiband relaxation in doped GaAsAlGaAs superlattices. <i>Applied Physics Letters</i> , 2008 , 92, 051104	3.4	2
263	Brenkov-type phase-matched second-harmonic emission from GaAsAlGaAs quantum-cascade lasers. <i>Applied Physics Letters</i> , 2008 , 92, 111114	3.4	7
262	Quantitative scanning capacitance microscopy on single subsurface InAs quantum dots. <i>Applied Physics Letters</i> , 2008 , 92, 092112	3.4	7

261	Impact of doping on the performance of short-wavelength InP-based quantum-cascade lasers. <i>Journal of Applied Physics</i> , 2008 , 103, 033104	2.5	31
260	Influence of the material parameters on quantum cascade devices. <i>Applied Physics Letters</i> , 2008 , 93, 13	130/8	35
259	Ultrafast probing of light-matter interaction in a midinfrared quantum cascade laser. <i>Applied Physics Letters</i> , 2008 , 93, 091105	3.4	15
258	Nonlinear wave-mixing in twin-waveguide GaAs/AlGaAs quantum cascade lasers. <i>Journal of Modern Optics</i> , 2008 , 55, 3211-3217	1.1	
257	Monolithic Mach⊠ehnder-type quantum cascade laser. Journal of Applied Physics, 2008, 104, 063110	2.5	3
256	Wavelength dependent phase locking in quantum cascade laser Y-junctions. <i>Applied Physics Letters</i> , 2008 , 92, 061110	3.4	9
255	Room temperature capacitance imaging of single sub-surface InAs quantum dots. <i>Journal of Physics: Conference Series</i> , 2008 , 109, 012032	0.3	
254	Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 147, 152-155	3.1	11
253	InAs/AlGaAs QDs for intersubband devices. Superlattices and Microstructures, 2008, 44, 411-415	2.8	6
252	Independent control of InAs quantum dot density and size on AlxGa1⊠As surfaces. <i>Journal of Materials Science: Materials in Electronics</i> , 2008 , 19, 714-719	2.1	6
251	Ballistic electron mean free path of titanylphthalocyanine films grown on GaAs. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 386-389		
250	Bi-stable behaviour in GaN-based resonant tunnelling diode structures. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2008 , 5, 431-434		16
249	Influence of GaN capping on performance of InAlN/AlN/GaN MOS-HEMT with Al2O3 gate insulation grown by CVD. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 1956-1958		7
248	Electro-optical intersubband modulators at telecommunication wavelengths based on GaN/AlN quantum wells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1093-1095	1.6	1
247	Force and bias dependent contrast in photocurrent imaging on GaAsAlAs heterostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 1229-1231	3	2
246	Acoustic phonon-assisted damping of Rabi oscillations in InAs quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 2013-2015	3	1
245	Dynamical frequency pulling of degenerated and nondegenerated modes in small mode volume whispering-gallery terahertz quantum-cascade lasers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 1840-1843	3	1
244	Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots. <i>Acta Physica Polonica A</i> , 2008 , 113, 777-782	0.6	2

243	Energy Spectrum of InAs Quantum Dots in GaAs/AlAs Superlattices. <i>Acta Physica Polonica A</i> , 2008 , 113, 975-978	0.6	5
242	Farfield Measurements of Y-Coupled Quantum Cascade Lasers. <i>Springer Proceedings in Physics</i> , 2008 , 147-149	0.2	
241	Impact of Doping Density in Short-Wavelength InP-Based Strain-Compensated Quantum-Cascade Lasers. <i>Springer Proceedings in Physics</i> , 2008 , 151-153	0.2	
240	In-based quantum dots on AlxGa1⊠As surfaces. <i>Microelectronic Engineering</i> , 2007 , 84, 1443-1445	2.5	12
239	Polarization dependence of intraband transitions in QDIPs. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 304-306		
238	Gate-lag and drain-lag effects in (GaN)/InAlN/GaN and InAlN/AlN/GaN HEMTs. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2007 , 204, 2019-2022	1.6	39
237	Characterization of planar photonic crystals using a quantum well infrared photodetector. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 2916-2925	1.3	
236	High-quality MBE growth of Alta1-tas-based THz quantum cascade lasers. <i>Open Physics</i> , 2007 , 5,	1.3	3
235	The Influence of Doping on the Performance of Terahertz Quantum-Cascade-Lasers 2007, WB5		
234	Force- and bias-dependent contrast in atomic force microscopy based photocurrent imaging on GaAsAlAs heterostructures. <i>Semiconductor Science and Technology</i> , 2007 , 22, 1209-1212	1.8	
233	Coherence in Y-coupled quantum cascade lasers. <i>Applied Physics Letters</i> , 2007 , 91, 161106	3.4	13
232	Influence of doping on the performance of terahertz quantum-cascade lasers. <i>Applied Physics Letters</i> , 2007 , 90, 101107	3.4	49
231	Ballistic electron transport through titanylphthalocyanine films. <i>Applied Physics Letters</i> , 2007 , 90, 09210	1 3.4	15
230	Two-electron states bound to interface defects in quantum cascade lasers subjected to a strong magnetic field. <i>Physical Review B</i> , 2007 , 76,	3.3	1
229	MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs. <i>Semiconductor Science and Technology</i> , 2007 , 22, 1272-1275	1.8	54
228	Short-wavelength intersubband electroabsorption modulation based on electron tunneling between GaNAIN coupled quantum wells. <i>Applied Physics Letters</i> , 2007 , 90, 223511	3.4	48
227	Two color, low intensity photocurrent feedback for local photocurrent spectroscopy. <i>Review of Scientific Instruments</i> , 2007 , 78, 063706	1.7	
226	Optimization of MBE Growth Parameters for GaAs-based THz Quantum Cascade Lasers. <i>AIP Conference Proceedings</i> , 2007 ,	Ο	4

(2006-2007)

Ballistic Electron Emission Microscopy/Spectroscopy on Au/Titanylphthalocyanine/GaAs Heterostructures. <i>Journal of Physics: Conference Series</i> , 2007 , 61, 1371-1374	0.3	2
Terahertz photonic crystal resonators in double-metal waveguides. <i>Optics Express</i> , 2007 , 15, 12418-24	3.3	35
Subwavelength Microdisk and Microring Terahertz Quantum-Cascade Lasers. <i>IEEE Journal of Quantum Electronics</i> , 2007 , 43, 687-697	2	24
Low bias reactive ion etching of GaAs with a SiCl4N2D2 time-multiplexed process. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 839		23
Growth of branched single-crystalline GaAs whiskers on Si nanowire trunks. <i>Nanotechnology</i> , 2007 , 18, 355306	3.4	26
Gate insulation and drain current saturation mechanism in InAlNCaN metal-oxide-semiconductor high-electron-mobility transistors. <i>Applied Physics Letters</i> , 2007 , 91, 043509	3.4	59
Ultrafast spectral hole burning spectroscopy of exciton spin flip processes in InAstaAs quantum dots. <i>Applied Physics Letters</i> , 2006 , 88, 192105	3.4	7
Pump-probe spectroscopy of interminiband relaxation and electron cooling in doped superlattices. <i>Applied Physics Letters</i> , 2006 , 88, 151108	3.4	9
Coherent 5.35th surface emission from a GaAs-based distributed feedback quantum-cascade laser. <i>Applied Physics Letters</i> , 2006 , 88, 121104	3.4	11
FELBE Free-Electron Laser: Status and Application for Time Resolved Spectroscopy Experiments 2006 ,		2
Sub-wavelength terahertz quantum-cascade laser resonators 2006,		1
Band structure mapping of photonic crystal intersubband detectors. <i>Applied Physics Letters</i> , 2006 , 89, 151107	3.4	24
Near infrared absorption and room temperature photovoltaic response in AlNGaN superlattices grown by metal-organic vapor-phase epitaxy. <i>Applied Physics Letters</i> , 2006 , 89, 041106	3.4	35
Negative differential resistance in dislocation-free GaNAlGaN double-barrier diodes grown on bulk GaN. <i>Applied Physics Letters</i> , 2006 , 88, 172106	3.4	90
WannierBtark level anticrossing in biperiodic superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3692-3695	1.3	3
Single InAs/GaAs quantum dots: Photocurrent and cross-sectional AFM analysis. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2006 , 32, 183-186	3	9
Microcavity THz quantum cascade laser. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 32, 316-319	3	7
Second-harmonic generation in GaAs-based quantum-cascade lasers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 35, 234-240	3	9
	Heterostructures. Journal of Physics: Conference Series, 2007, 61, 1371-1374 Terahertz photonic crystal resonators in double-metal waveguides. Optics Express, 2007, 15, 12418-24 Subwavelength Microdisk and Microring Terahertz Quantum-Cascade Lasers. IEEE Journal of Quantum Electronics, 2007, 43, 687-697 Low bias reactive ion etching of GaAs with a SiCl4N2D2 time-multiplexed process. Journal of Vacuum Science & Technology B, 2007, 25, 839 Growth of branched single-crystalline GaAs whiskers on Si nanowire trunks. Nanotechnology, 2007, 18, 355306 Gate insulation and drain current saturation mechanism in InAINIGAN metal-oxide-semiconductor high-electron-mobility transistors. Applied Physics Letters, 2007, 91, 043509 Ultrafast spectral hole burning spectroscopy of exciton spin flip processes in InAsiGaAs quantum dots. Applied Physics Letters, 2006, 88, 192105 Pump-probe spectroscopy of interminiband relaxation and electron cooling in doped superlattices. Applied Physics Letters, 2006, 88, 151108 Coherent 5.35th surface emission from a GaAs-based distributed feedback quantum-cascade laser. Applied Physics Letters, 2006, 88, 121104 FELBE Free-Electron Laser: Status and Application for Time Resolved Spectroscopy Experiments 2006, Sub-wavelength terahertz quantum-cascade laser resonators 2006, Sub-wavelength terahertz quantum-cascade laser resonators 2006, Band structure mapping of photonic crystal intersubband detectors. Applied Physics Letters, 2006, 89, 151107 Near infrared absorption and room temperature photovoltaic response in AINIGAN superlattices grown by metal-organic vapor-phase epitaxy. Applied Physics Letters, 2006, 89, 041106 Negative differential resistance in dislocation-free GaNiAlGaN double-barrier diodes grown on bulk GaN. Applied Physics Letters, 2006, 88, 172106 WannierBark level anticrossing in biperiodic superlattices. Physica Status Solidi (B): Basic Research, 2006, 243, 3692-3695 Single InAs/GaAs quantum dots Photocurrent and cross-sectional AFM analysis. Physica E: Low-Dimensiona	Heterostructures. Journal of Physics: Conference Series, 2007, 61, 1371-1374 Terahertz photonic crystal resonators in double-metal waveguides. Optics Express, 2007, 15, 12418-24 3.3 Subwavelength Microdisk and Microring Terahertz Quantum-Cascade Lasers. IEEE Journal of Quantum Electronics, 2007, 43, 687-697 Low bias reactive ion etching of GaAs with a SiCIdN2D2 time-multiplexed process. Journal of Vacuum Science & Technology B, 2007, 25, 839 Growth of branched single-crystalline GaAs whiskers on Si nanowire trunks. Nanotechnology, 2007, 34 Gate insulation and drain current saturation mechanism in InAlNGaN metal-oxide-semiconductor high-electron-mobility transistors. Applied Physics Letters, 2007, 91, 043509 Ultrafast spectral hole burning spectroscopy of exciton spin flip processes in InAsGaAs quantum dots. Applied Physics Letters, 2006, 88, 192105 Pump-probe spectroscopy of interminiband relaxation and electron cooling in doped superlattices. Applied Physics Letters, 2006, 88, 192104 Pump-probe spectroscopy of interminiband relaxation and electron cooling in doped superlattices. Applied Physics Letters, 2006, 88, 121104 Sub-wavelength terahertz quantum-cascade laser resonators 2006, Sub-wavelength terahertz quantum-cascade laser resonators 2006, Sub-wavelength terahertz quantum-cascade laser resonators 2006, Band structure mapping of photonic crystal intersubband detectors. Applied Physics Letters, 2006, 89, 151107 Near infrared absorption and room temperature photovoltaic response in AlNGaN superlattices grown by metal-organic vapor-phase epitaxy. Applied Physics Letters, 2006, 89, 041106 34 Negative differential resistance in dislocation-free GaNAlGaN double-barrier diodes grown on bulk GaN. Applied Physics Letters, 2006, 88, 172106 WannierBark level anticrossing in biperiodic superlattices. Physica Status Solidi (B): Basic Research, 1.3 Microcavity THz quantum doss Photocurrent and cross-sectional AFM analysis. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 183-186 Microc

207	Deeply etched waveguide structures for quantum cascade lasers. <i>Microelectronic Engineering</i> , 2006 , 83, 1163-1166	2.5	3
206	Self organized InAs quantum dots grown on patterned GaAs substrates. <i>Microelectronic Engineering</i> , 2006 , 83, 1573-1576	2.5	6
205	Nano-patterning and growth of self-assembled quantum dots. <i>Microelectronics Journal</i> , 2006 , 37, 1532-	1 <u>Б</u> 84	6
204	Second-harmonic generation in three-well and bound-to-continuum GaAs-based quantum-cascade lasers. <i>Applied Physics B: Lasers and Optics</i> , 2006 , 85, 231-234	1.9	
203	Surface emission from MBE and MOVPE grown quantum cascade lasers 2005,		1
202	Cross-sectional ballistic electron emission microscopy for Schottky barrier height profiling on heterostructures. <i>Applied Physics Letters</i> , 2005 , 86, 202112	3.4	3
201	Quantum cascade lasers with lateral double-sided distributed feedback grating. <i>Applied Physics Letters</i> , 2005 , 86, 111103	3.4	21
200	Terahertz microcavity quantum-cascade lasers. <i>Applied Physics Letters</i> , 2005 , 87, 211112	3.4	36
199	GaAs/AlGaAs quantum cascade lasers with dry etched semiconductor Bir Bragg reflectors. <i>Journal of Modern Optics</i> , 2005 , 52, 2303-2308	1.1	6
198	Intersubband photoconductivity at 1.6th using a strain-compensated AlNCGaN superlattice. <i>Applied Physics Letters</i> , 2005 , 87, 191102	3.4	37
197	Intraband transitions in quantum dotBuperlattice heterostructures. <i>Physical Review B</i> , 2005 , 72,	3.3	36
196	Photocurrent spectroscopy of single InAs/GaAs quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 3114-3117		8
195	Donor ionization energy in bulk GaAs for different donor concentrations and magnetic fields. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 614-618	1.6	2
194	High power second-order distributed feedback quantum cascade lasers. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 977-979	1.6	
193	Second-harmonic generation in GaAs-based quantum-cascade lasers grown on <100> substrates. <i>Electronics Letters</i> , 2005 , 41, 1331	1.1	8
192	X-ray investigation of quantum well intermixing after postgrowth rapid thermal processing. <i>Journal Physics D: Applied Physics</i> , 2005 , 38, A132-A136	3	4
191	Microcavity terahertz quantum-cascade laser 2005 , 6010, 36		
190	Quantitative scanning capacitance spectroscopy on GaAs and InAs quantum dots. <i>Semiconductor Science and Technology</i> , 2005 , 20, 903-907	1.8	6

189	Single-mode surface-emitting quantum-cascade lasers. <i>Applied Physics Letters</i> , 2005 , 86, 211102	3.4	36
188	Resonant impurity bands in semiconductor superlattices. <i>Physical Review Letters</i> , 2005 , 95, 257401	7.4	17
187	Excitonic signatures in the photoluminescence and terahertz absorption of a GaAsAlxGa1AAs multiple quantum well. <i>Physical Review B</i> , 2005 , 71,	3.3	25
186	Tracing deeply buried InAstaAs quantum dots using atomic force microscopy and wet chemical etching. <i>Applied Physics Letters</i> , 2005 , 86, 063111	3.4	5
185	Self Organized InAs Quantum Dots on Patterned GaAs Substrates. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 872, 1		
184	Finite-Difference Time-Domain Simulation of Mid- and Far-Infrared Quantum Cascade Lasers. <i>Acta Physica Polonica A</i> , 2005 , 107, 179-183	0.6	2
183	Magnetic field effects in terahertz quantum-cascade lasers. <i>Semiconductor Science and Technology</i> , 2004 , 19, S348-S350	1.8	1
182	Ballistic electron microscopy on doped AlAs barriers in the regime of the Mott transition. <i>Semiconductor Science and Technology</i> , 2004 , 19, S8-S10	1.8	
181	Intraband relaxation of photoexcited electrons in GaAs/AlGaAs quantum wells and InAs/GaAs self-assembled quantum dots. <i>Semiconductor Science and Technology</i> , 2004 , 19, S287-S289	1.8	4
180	Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers. <i>Semiconductor Science and Technology</i> , 2004 , 19, S110-S112	1.8	14
179	Three-terminal mid-IR tunable emitters based on WannierBtark ladder transitions in semiconductor superlattices. <i>Semiconductor Science and Technology</i> , 2004 , 19, S87-S88	1.8	1
178	Pulse-induced quantum interference of intersubband transitions in coupled quantum wells. <i>Applied Physics Letters</i> , 2004 , 84, 64-66	3.4	31
177	Optical modes in mesoscopic quantum cascade ring lasers. <i>Physical Review B</i> , 2004 , 69,	3.3	12
176	Tuning quantum-cascade lasers by postgrowth rapid thermal processing. <i>Applied Physics Letters</i> , 2004 , 84, 164-166	3.4	8
175	High-performance distributed feedback quantum cascade lasers grown by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 2004 , 85, 5529-5531	3.4	25
174	Tuned transition from a quantum well to a quantum wire investigated by magnetophonon resonance. <i>Journal of Applied Physics</i> , 2004 , 95, 2509-2517	2.5	
173	Processing of deeply etched GaAs/AlGaAs quantum cascade lasers with grating structures. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 829, 290		
172	New Generation of Photoconductive Few-Cycle Terahertz Emitters. <i>Springer Series in Optical Sciences</i> , 2004 , 405-410	0.5	

171	High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy 2004,		2
170	Optically induced intraband electron transfer in self-assembled InAs quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 434-437		1
169	Fast characterisation of InAs quantum dot structures using AFM. <i>Journal of Crystal Growth</i> , 2004 , 264, 26-30	1.6	5
168	Intersublevel dynamics of semiconductor nanostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 25, 271-279	3	2
167	Hot electron spectroscopy of the GaAs/AlAs/GaAs band structure. <i>Semiconductor Science and Technology</i> , 2004 , 19, S102-S103	1.8	1
166	Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well. <i>Physical Review B</i> , 2004 , 70,	3.3	60
165	Coherent vs. incoherent charge transport in semiconductor quantum cascade structures 2004 , 5352, 333		
164	Spectral dynamics of distributed feedback quantum cascade lasers. <i>Semiconductor Science and Technology</i> , 2004 , 19, S336-S338	1.8	8
163	Few-cycle terahertz generation and spectroscopy of nanostructures. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 251-60; discussion 260-2	3	6
162	Compact THz-source based on femtosecond Ti:Sapphire laser and intracavity photoconductive emitter 2003 , 4978, 50		
161	Room-temperature operation of GaAs-based quantum cascade lasers processed as ridge and microcavity waveguides. <i>IEE Proceedings: Optoelectronics</i> , 2003 , 150, 282		2
160	Investigation of biomass steam gasification gas using a GaAs based quantum cascade laser emitting at 11 fh. <i>Optics Communications</i> , 2003 , 216, 357-360	2	4
159	High-energy ballistic transport in hetero- and nano-structures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 16, 129-136	3	3
158	Energy level engineering in InAs quantum dot stacks embedded in AlAs/GaAs superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 17, 42-45	3	6
157	Room temperature lasing of electrically pumped quantum cascade micro-cylinders. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 17, 626-628	3	1
156	Electroluminescence of a quantum dot cascade structure. <i>Applied Physics Letters</i> , 2003 , 82, 3862-3864	3.4	32
155	Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers. <i>Applied Physics Letters</i> , 2003 , 82, 1664-1666	3.4	36
154	High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers. <i>Applied Physics Letters</i> , 2003 , 83, 4698-4700	3.4	73

153	Imaging impurities in AlAs/GaAs single-barrier structures in the regime of the Mott transition. <i>Physical Review B</i> , 2003 , 68,	3.3	3
152	Diffusion and drift in terahertz emission at GaAs surfaces. <i>Applied Physics Letters</i> , 2003 , 83, 5476-5478	3.4	84
151	Hot-electron spectroscopy in parallel magnetic fields. <i>Applied Physics Letters</i> , 2003 , 82, 3922-3924	3.4	1
150	Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 2003 , 83, 3572-3574	3.4	90
149	Population dynamics in quantum structures. Springer Series in Chemical Physics, 2003, 392-394	0.3	
148	Ultrafast coherent electron transport in quantum cascade structures. <i>Springer Series in Chemical Physics</i> , 2003 , 356-358	0.3	1
147	Terahertz emitter with integrated semiconductor Bragg mirror. Electronics Letters, 2003, 39, 460	1.1	8
146	Ballistic electron emission microscopy for local measurements of barrier heights on InAs self-assembled quantum dots on GaAs. <i>Physica B: Condensed Matter</i> , 2002 , 314, 81-85	2.8	2
145	Direct measurement of intersubband dynamics. <i>Physica B: Condensed Matter</i> , 2002 , 314, 259-262	2.8	
144	LO-phonon assisted hot electron transport in biased superlattices. <i>Physica B: Condensed Matter</i> , 2002 , 314, 409-412	2.8	
143	Magnetophonon resonance in the confinement of an n-GaAs/AlGaAs-heterojunction, tuned to a quasi-one-dimensional quantum wire. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 446-449	3	2
142	Optics with ballistic electrons: anti-reflection coatings for GaAs/AlGaAs superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 285-288	3	4
141	Photoconductive response of InAs/GaAs quantum dot stacks. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 190-193	3	8
140	High performance single mode GaAs quantum cascade lasers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 840-843	3	4
139	Terahertz quantum cascade emitters based on AlAs/GaAs. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 900-903	3	5
138	Intersubband relaxation dynamics in semiconductor quantum structures. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2002 , 13, 908-911	3	4
137	Narrow electron injector for hot electron spectroscopy. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 728-731	3	
136	Single mode GaAs quantum cascade laser. <i>Microelectronic Engineering</i> , 2002 , 63, 179-184	2.5	

135	Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 fb. <i>Applied Physics Letters</i> , 2002 , 80, 1864-1866	3.4	44
134	Surface-modified GaAs terahertz plasmon emitter. <i>Applied Physics Letters</i> , 2002 , 81, 871-873	3.4	17
133	Intersubband transport in quantum wells in strong magnetic fields mediated by single- and two-electron scattering. <i>Physical Review Letters</i> , 2002 , 88, 226803	7.4	23
132	Long wavelength (15 and 23 h) GaAs/AlGaAs quantum cascade lasers. <i>Applied Physics Letters</i> , 2002 , 80, 3691-3693	3.4	24
131	Measuring the energetic distribution of ballistic electrons after their refraction at an Au L aAs interface. <i>Applied Physics Letters</i> , 2002 , 81, 4964-4966	3.4	2
130	Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers. <i>Applied Physics Letters</i> , 2002 , 80, 4094-4096	3.4	11
129	Dephasing in modulation-doped quantum structures probed by THz time-domain spectroscopy. <i>Applied Physics Letters</i> , 2002 , 81, 4344-4346	3.4	19
128	Ballistic electron emission microscopy of Bn-surfaceßelf-assembled InAs dots and wetting layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002 , 20, 373		2
127	Few-cycle THz generation for imaging and tomography applications. <i>Physics in Medicine and Biology</i> , 2002 , 47, 3691-7	3.8	2
126	Wannier-Stark states in finite superlattices. <i>Physical Review Letters</i> , 2002 , 89, 136803	7.4	17
125	Voltage-controlled intracavity terahertz generator for self-starting Ti:sapphire lasers. <i>Optics Letters</i> , 2002 , 27, 1941-3	3	8
124	L-valley electron transport in GaAs-AlAs double-barrier resonant tunneling structures studied by ballistic electron emission microscopy. <i>Physical Review B</i> , 2002 , 66,	3.3	7
123	Ultrafast coherent electron transport in semiconductor quantum cascade structures. <i>Physical Review Letters</i> , 2002 , 89, 047402	7.4	46
122	Energy level engineering in InAs quantum dot nanostructures. <i>Applied Physics Letters</i> , 2002 , 81, 2079-2	08.14	31
121	Magnetic field effects and k -filtering in BEEM on GaAsAlGaAs resonant tunneling structures. <i>Applied Physics A: Materials Science and Processing</i> , 2001 , 72, S233-S237	2.6	
120	Few-cycle THZ spectroscopy of semiconductor quantum structures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2001 , 9, 76-83	3	1
119	Determination of the 2D-Electron Gas Density in a Quantum Well from CII and CIV Measurements. <i>Physica Status Solidi A</i> , 2001 , 183, 391-397		1
118	Towards functional group-specific detection in high-performance liquid chromatography using mid-infrared quantum cascade lasers. <i>Journal of Chromatography A</i> , 2001 , 934, 123-8	4.5	34

(2000-2001)

117	MBE-grown GaAs/AlGaAs and strained InGaAs/AlGaAs/GaAs quantum cascade lasers. <i>Journal of Crystal Growth</i> , 2001 , 227-228, 197-201	1.6	2
116	Resonant tunneling mediated by resonant emission of intersubband plasmons. <i>Physical Review Letters</i> , 2001 , 86, 2850-3	7.4	6
115	Magnetotransport through semiconductor superlattices. <i>Physical Review B</i> , 2001 , 63,	3.3	5
114	Enhanced k? filtering effects in ballistic electron emission experiments. <i>Physical Review B</i> , 2001 , 63,	3.3	4
113	Intersubband absorption dynamics in coupled quantum wells. <i>Applied Physics Letters</i> , 2001 , 79, 2755-27	7 <i>53</i> 7.4	24
112	Narrow electron injector for ballistic electron spectroscopy. <i>Applied Physics Letters</i> , 2001 , 78, 3639-364	13.4	10
111	Monitoring the ultrafast electric field change at a mid-infrared plasma Bragg mirror. <i>Optics Letters</i> , 2001 , 26, 1618-20	3	1
110	Antireflection coating for miniband transport and Fabry Pflot resonances in GaAs/AlGaAs superlattices. <i>Applied Physics Letters</i> , 2001 , 79, 1486-1488	3.4	48
109	Strongly detuned IV-VI microcavity and microdisk resonances: mode splitting and lasing. <i>Springer Proceedings in Physics</i> , 2001 , 677-678	0.2	
108	Correlation of vertical transport and infrared absorption in GaAs/AlGaAs superlattices. <i>Springer Proceedings in Physics</i> , 2001 , 715-716	0.2	
107	Coherent THz emission from optically pumped intersubband plasmons in parabolic quantum wells. <i>Springer Series in Chemical Physics</i> , 2001 , 203-205	0.3	
106	Few-Cycle THz Spectroscopy of Semiconductor Quantum Structures. <i>Springer Proceedings in Physics</i> , 2001 , 579-582	0.2	
105	Excitation Dynamics beyond the Slowly-Varying Envelope Approximation. <i>Springer Series in Chemical Physics</i> , 2001 , 235-237	0.3	
104	Terahertz emission from semiconductor nanostructures 2001 , 115-124		
103	Optics with Ballistic Electrons: Anti-Reflection Coatings for GaAs-AlGaAs Superlattices. <i>Springer Proceedings in Physics</i> , 2001 , 743-744	0.2	1
102	Observations of interaction-assisted hopping transport in GaAs/Ga1NAlxAs quantum wells. <i>Journal of Luminescence</i> , 2000 , 91, 7-12	3.8	
101	Transport spectroscopy of quantum wires and superlattices. <i>Thin Solid Films</i> , 2000 , 367, 267-276	2.2	
100	Few-cycle THz spectroscopy of nanostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 693-697	3	1

99	Intersubband and interminiband GaAs/AlGaAs quantum cascade lasers at 10th. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 709-712	3	
98	A novel device layout for tunneling spectroscopy of low-dimensional electron systems. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 6, 343-347	3	
97	k//=0 filtering effects in ballistic electron transport through sub-surface GaAsAlGaAs double barrier resonant tunneling structures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 6, 339-342	3	
96	Interminiband spectroscopy of biased superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 274-278	3	1
95	Intersubband and interminiband GaAs/AlGaAs quantum cascade lasers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 1-7	3	1
94	High-power tunable quantum fountain unipolar lasers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 12-19	3	15
93	GaAs/AlGaAs microresonator quantum cascade lasers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 29-32	3	
92	GaAs/AlGaAs quantum cascade laser la source for gas absorption spectroscopy. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2000 , 7, 37-39	3	12
91	Terahertz phase modulator. <i>Electronics Letters</i> , 2000 , 36, 1156	1.1	96
90	The lower branch of plasmon-phonon coupled modes. <i>Semiconductor Science and Technology</i> , 2000 , 15, 813-817	1.8	3
89	Magneto-optical Terahertz emission from plasmons in parabolic quantum wells. <i>Semiconductor Science and Technology</i> , 2000 , 15, 315-321	1.8	1
88	Terahertz quantum cascade structures: Intra- versus interwell transition. <i>Applied Physics Letters</i> , 2000 , 77, 1928-1930	3.4	38
87	Continuous-wave operation of distributed feedback AlAs/GaAs superlattice quantum-cascade lasers. <i>Applied Physics Letters</i> , 2000 , 77, 3328-3330	3.4	50
86	Ballistic transport through GaAsAlGaAs superlattices in transverse magnetic fields. <i>Journal of Applied Physics</i> , 2000 , 88, 3495-3500	2.5	3
85	Quantum cascade lasers with monolithic airBemiconductor Bragg reflectors. <i>Applied Physics Letters</i> , 2000 , 77, 1241-1243	3.4	18
84	Magnetic-field-enhanced quantum-cascade emission. <i>Applied Physics Letters</i> , 2000 , 76, 19-21	3.4	49
83	Coherent terahertz emission from optically pumped intersubband plasmons in parabolic quantum wells. <i>Applied Physics Letters</i> , 2000 , 76, 3501-3503	3.4	16
82	Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser. <i>Applied Physics Letters</i> , 2000 , 77, 1077-1079	3.4	24

81	Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers. <i>Applied Optics</i> , 2000 , 39, 6920	613,0	28
80	Sampling a terahertz dipole transition with subcycle time resolution. <i>Optics Letters</i> , 2000 , 25, 272-4	3	29
79	Long-wavelength (/spl lambda/=10 /spl mu/m) quadrupolar-shaped GaAs-AlGaAs microlasers. <i>IEEE Journal of Quantum Electronics</i> , 2000 , 36, 458-464	2	34
78	Surface-emitting distributed feedback quantum-cascade lasers. <i>Applied Physics Letters</i> , 2000 , 77, 2086-2	29848	46
77	Strained InGaAs/AlGaAs/GaAs-quantum cascade lasers. <i>Applied Physics Letters</i> , 2000 , 76, 3361-3363	3.4	23
76	Monolithic integration of vertical-cavity laser diodes and resonant photodetectors with hybrid Si3N4-SiO2 top Bragg mirrors. <i>IEEE Photonics Technology Letters</i> , 2000 , 12, 119-121	2.2	5
75	Improved performance of GaAs-AlGaAs superlattice quantum cascade lasers beyond /spl lambda/=13 fh. <i>IEEE Photonics Technology Letters</i> , 2000 , 12, 1144-1146	2.2	3
74	GaAs/AlGaAs distributed feedback quantum cascade lasers. <i>Applied Physics Letters</i> , 2000 , 76, 253-255	3.4	43
73	Temperature dependence of far-infrared electroluminescence in parabolic quantum wells. <i>Applied Physics Letters</i> , 1999 , 74, 3158-3160	3.4	29
72	Temperature-dependent studies of InAs base layers for ballistic electron emission microscopy. <i>Physical Review B</i> , 1999 , 59, 4618-4621	3.3	5
71	Metal[hsulator[hetal injector for ballistic electron emission spectroscopy. <i>Applied Physics Letters</i> , 1999 , 75, 4007-4009	3.4	4
70	k =0 filtering in resonant-tunneling processes between materials of different effective electron mass. <i>Physical Review B</i> , 1999 , 60, R5137-R5140	3.3	11
69	High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 th with 2.5% tunability. <i>Applied Physics Letters</i> , 1999 , 74, 1537-1539	3.4	51
68	A device layout for tunneling spectroscopy of barrier-separated electron systems with tunable dimensionality. <i>Applied Physics Letters</i> , 1999 , 74, 1758-1760	3.4	7
67	Continuum Wannier-Stark Ladders Strongly Coupled by Zener Resonances in Semiconductor Superlattices. <i>Physical Review Letters</i> , 1999 , 82, 3120-3123	7.4	27
66	Towards stimulated generation of coherent plasmons in nanostructures. <i>Journal of Applied Physics</i> , 1999 , 85, 3708-3712	2.5	6
65	Terahertz-electroluminescence in a quantum cascade structure. <i>Physica B: Condensed Matter</i> , 1999 , 272, 216-218	2.8	29
64	Coherent THz plasmons in GaAs/AlGaAs superlattices. <i>Physica B: Condensed Matter</i> , 1999 , 272, 375-377	2.8	7

63	Current spectroscopy of superlattice bandstructure and transport. <i>Microelectronic Engineering</i> , 1999 , 47, 59-63	2.5	1
62	Ballistic Electron Emission Microscopy on buried GaAs?AlGaAs superlattices. <i>Microelectronic Engineering</i> , 1999 , 47, 69-71	2.5	
61	GaAs/AlGaAs quantum cascade intersubband and interminiband emitter. <i>Journal of Crystal Growth</i> , 1999 , 201-202, 919-922	1.6	3
60	Transmission through superlattices with interface roughness. <i>Superlattices and Microstructures</i> , 1999 , 25, 43-46	2.8	2
59	Mean free path of ballistic electrons in GaAs/AlGaAs superlattices. <i>Superlattices and Microstructures</i> , 1999 , 25, 47-51	2.8	10
58	Highly transmittive semiconductor base for ballistic electron emission microscopy. <i>Surface and Interface Analysis</i> , 1999 , 27, 517-520	1.5	1
57	Biased GaAs/AlGaAs superlattices employed as energy filter for ballistic electron emission microscopy. <i>Surface and Interface Analysis</i> , 1999 , 27, 542-546	1.5	
56	Surface plasmon-enhanced photoluminescence from a single quantum well. <i>Applied Physics Letters</i> , 1999 , 75, 1577-1579	3.4	96
55	GaAs/AlGaAs-based microcylinder lasers emitting at 10 fb. <i>Applied Physics Letters</i> , 1999 , 75, 1045-1047	3.4	30
54	GaAs/AlGaAs superlattice quantum cascade lasers at 🗓 3 fh. <i>Applied Physics Letters</i> , 1999 , 75, 1345-1347	3.4	62
53	Plasmon-based terahertz emission from quantum well structures. <i>Applied Physics Letters</i> , 1999 , 75, 168	5 ₃ 14687	22
52	GaAs AlGaAs intersubband MIR lasers 1999 , 3828, 32		
51	AlGaAs/GaAs Distributed Feedback Quantum Cascade Lasers. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 607, 141		
50	Minibands and Wannier-Stark ladders in semiconductor superlattices studied by infrared spectroscopy. <i>Brazilian Journal of Physics</i> , 1999 , 29,	1.2	6
49	Ballistic electron transport in vertical biased superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 282-286	3	12
48	Quantum cascade electroluminescence in GaAs/AlGaAs structures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 449-452	3	4
47	Current transport in multiple superlattice structures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 515-518	3	1
46	Probing of superlattice minibands by ballistic electron emission microscopy. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 850-853	3	6

45	Ballistic and dissipative electron transport in semiconductor superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 3, 152-157	3	
44	Ballistic electron emission microscopy on biased GaAsAlGaAs superlattices. <i>Applied Physics Letters</i> , 1998 , 73, 3138-3140	3.4	16
43	Coherent plasmons in n-doped GaAs. <i>Physical Review B</i> , 1998 , 58, 4553-4559	3.3	88
42	A highly transmittive semiconductor base for ballistic electron emission microscopy. <i>Applied Physics Letters</i> , 1998 , 73, 1218-1220	3.4	14
41	Electron refraction in ballistic electron-emission microscopy studied by a superlattice energy filter. <i>Physical Review B</i> , 1998 , 58, R7516-R7519	3.3	19
40	Transition Between Coherent and Incoherent Electron Transport in GaAs/GaAlAs Superlattices. <i>Physical Review Letters</i> , 1998 , 81, 3495-3498	7.4	64
39	Energy levels of quantum wires determined from magnetophonon resonance experiments. <i>Physical Review B</i> , 1998 , 57, 3966-3973	3.3	16
38	Energy Relaxation of Electrons in GaAs/AlGaAs Quantum Wells and Superlattices 1998, 153-160		
37	THZ Time-Domain Spectroscopy of Intersubband Plasmons 1998 , 173-180		
36	Quantum Cascade Electroluminescence in the GaAs/AIGaAs Material System 1998, 17-21		
35	Driving Intersubband Transitions With THz Pulses. Springer Series in Chemical Physics, 1998, 208-210	0.3	
34	Ballistic electron spectroscopy of vertical superlattice minibands. <i>Applied Physics Letters</i> , 1997 , 70, 649	-654	34
33	Direct observation of the LO phonon bottleneck in wide GaAs/Alx Ga1 As quantum wells. <i>Physical Review B</i> , 1997 , 55, 5171-5176	3.3	114
32	Mid-infrared electroluminescence in GaAs/AlGaAs structures. <i>Applied Physics Letters</i> , 1997 , 71, 2892-28	39 4 .4	26
31	GaAs/AlGaAs Intersubband MID-Infrared Emitter. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 484, 165		3
30	Few-Cycle THz Emission from Cold Plasma Oscillations. <i>Physical Review Letters</i> , 1997 , 79, 3038-3041	7.4	145
			_
29	Intersubband Dynamics below the Optical Phonon Energy for Single and Coupled Quantum Well Systems. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 208-211	1.3	2

27	Quenching of Miniband Transport in Biased Undoped Superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 393-396	1.3	6
26	Coherent Few-Cycle THz Emission from Plasmons in Bulk GaAs. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 67-69	1.3	1
25	Transport characterization of quantum wires by magnetophonon and magnetic depopulation experiments. <i>Superlattices and Microstructures</i> , 1997 , 22, 249-255	2.8	6
24	Local barrier heights on quantum wires determined by ballistic electron emission microscopy. <i>Applied Physics Letters</i> , 1996 , 68, 2876-2878	3.4	10
23	Temperature-dependent magnetotransport properties for systems of few quantum wires. <i>Physica B: Condensed Matter</i> , 1996 , 227, 24-30	2.8	7
22	Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser. <i>Superlattices and Microstructures</i> , 1996 , 19, 17-24	2.8	14
21	Single quantum dots as scanning tunneling microscope tips. <i>Superlattices and Microstructures</i> , 1996 , 20, 623-626	2.8	4
20	Ballistic electron emission microscopy in liquid helium using low dimensional collector electrodes. <i>Applied Physics Letters</i> , 1996 , 69, 1725-1727	3.4	10
19	Calcium- and oxygen-doped high-Tc superconductive Y1\(\mathbb{L}\)CaxBa2Cu3Oy films. <i>Physica C:</i> Superconductivity and Its Applications, 1994 , 223, 14-18	1.3	13
18	Comparison of IR - active phonons In YBCO ceramics with different carrier concentrations. <i>Journal of Alloys and Compounds</i> , 1993 , 195, 355-358	5.7	
17	. IEEE Transactions on Power Systems, 1993 , 8, 1227-1234	7	O
16	Influence of impurities on broadband p-type-Ge laser spectra under uniaxial stress. <i>Physical Review B</i> , 1993 , 47, 16586-16589	3.3	2
15	Narrowband Landau emission from high purity GaAs layers grown by molecular beam epitaxy. <i>Materials Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1993 , 168, 117-119	5.3	
14	Critical temperature dependence of YBa2Cu3Oy and Y1\(\mathbb{U}\)CaxBa2Cu3Oy on carrier concentration. <i>Physica C: Superconductivity and Its Applications</i> , 1993 , 206, 291-296	1.3	33
13	Analysis of impurity distribution in n-GaAs layers by photoconductivity and cyclotron resonance measurements. <i>Applied Surface Science</i> , 1991 , 50, 261-264	6.7	1
12	Improved tunable InSb FIR detectors. <i>Infrared Physics</i> , 1991 , 32, 439-442		23
11	Subband spectroscopy in two-dimensional electron gas systems. <i>Semiconductor Science and Technology</i> , 1990 , 5, 308-311	1.8	7
10	Subbands and photoconductivity in two barrier-separated 2D electron gas systems. <i>Surface Science</i> , 1990 , 228, 399-402	1.8	

LIST OF PUBLICATIONS

9 FIR Measurements of Zn-Substituted YBCO Ceramics. Springer Series in Solid-state Sciences, 1990, 294-297.4

8	Temperature dependence of far-infrared difference reflectivity of YBa2Cu. <i>Physical Review B</i> , 1989 , 39, 6716-6726	3.3	8
7	Difference FIR-reflectivity measurements of YBCO samples and their model dielectric function. <i>Physica C: Superconductivity and Its Applications</i> , 1988 , 153-155, 816-817	1.3	4
6	Thermodynamic and Magneto-Optic Investigations of the Landau Level Density of States for 2D Electrons in GaAs. <i>Springer Series in Solid-state Sciences</i> , 1987 , 193-201	0.4	2
5	Landau level density of states through specific heat in GaAs/GaAlAs multilayers. <i>Surface Science</i> , 1986 , 170, 277-284	1.8	11
	Specific heat of two-dimensional electrons in GaAs-GaAlAs multilayers. <i>Physical Review Letters</i> ,		
4	1985 , 54, 1820-1823	7.4	221
3		7.4	3
	1985, 54, 1820-1823 A direct up-conversion transmitter with integrated prescaler for reconfigurable	7.4	