Raul Huertas Ruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7251125/publications.pdf Version: 2024-02-01

RAILI HILEDTAS RUZ

#	Article	IF	CITATIONS
1	Biofortification of common bean (<i>Phaseolus vulgaris</i> L.) with iron and zinc: Achievements and challenges. Food and Energy Security, 2023, 12, .	4.3	10
2	Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method. Food Chemistry, 2022, 387, 132900.	8.2	8
3	Alfalfa (<i>Medicago sativa</i> L.) <i>pho2</i> mutant plants hyperaccumulate phosphate. G3: Genes, Genomes, Genetics, 2022, , .	1.8	10
4	Transcriptional, metabolic, physiological and developmental responses of switchgrass to phosphorus limitation. Plant, Cell and Environment, 2021, 44, 186-202.	5.7	27
5	DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytologist, 2021, 229, 548-562.	7.3	22
6	A Novel Putative Microtubule-Associated Protein Is Involved in Arbuscule Development during Arbuscular Mycorrhiza Formation. Plant and Cell Physiology, 2021, 62, 306-320.	3.1	9
7	Increased Ascorbate Biosynthesis Does Not Improve Nitrogen Fixation Nor Alleviate the Effect of Drought Stress in Nodulated Medicago truncatula Plants. Frontiers in Plant Science, 2021, 12, 686075.	3.6	0
8	A Plant Gene Encoding One-Heme and Two-Heme Hemoglobins With Extreme Reactivities Toward Diatomic Gases and Nitrite. Frontiers in Plant Science, 2020, 11, 600336.	3.6	8
9	Hemoglobins in the legume– <i>Rhizobium </i> symbiosis. New Phytologist, 2020, 228, 472-484.	7.3	33
10	Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity. Plant Cell, 2019, 31, 537-554.	6.6	42
11	An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods, 2018, 14, 34.	4.3	34
12	Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato. Frontiers in Plant Science, 2016, 7, 1273.	3.6	75
13	Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant, Cell and Environment, 2016, 39, 2303-2318.	5.7	91
14	The <scp><scp>K⁺</scp></scp> <scp>H⁺</scp> antiporter <scp>LeNHX2</scp> increases salt tolerance by improving <scp><scp>K⁺</scp></scp> homeostasis in transgenic tomato. Plant, Cell and Environment, 2013, 36, 2135-2149.	5.7	67
15	Two closely linked tomato <scp>HKT</scp> coding genes are positional candidates for the major tomato <scp>QTL</scp> involved in <scp>N</scp> a ⁺ / <scp>K</scp> ⁺ homeostasis. Plant, Cell and Environment, 2013, 36, 1171-1191.	5.7	132
16	Involvement of SISOS2 in tomato salt tolerance. Bioengineered, 2012, 3, 298-302.	3.2	24
17	Overexpression of <i>SISOS2</i> (<i>SICIPK24</i>) confers salt tolerance to transgenic tomato. Plant, Cell and Environment, 2012, 35, 1467-1482.	5.7	101
18	Involvement of SISOS2 in tomato salt tolerance. Bioengineered Bugs, 2012, 3, .	1.7	0

#	Article	IF	CITATIONS
19	Plant NHX cation/proton antiporters. Plant Signaling and Behavior, 2009, 4, 265-276.	2.4	217