Raul Huertas Ruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7251125/publications.pdf

Version: 2024-02-01

759233 888059 19 910 12 17 citations h-index g-index papers 21 21 21 1313 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plant NHX cation/proton antiporters. Plant Signaling and Behavior, 2009, 4, 265-276.	2.4	217
2	Two closely linked tomato <scp>HKT</scp> coding genes are positional candidates for the major tomato <scp>QTL</scp> involved in <scp>N</scp> a ⁺ / <scp>K</scp> ⁺ homeostasis. Plant, Cell and Environment, 2013, 36, 1171-1191.	5.7	132
3	Overexpression of <i>SISOS2</i> (<i>SICIPK24</i>) confers salt tolerance to transgenic tomato. Plant, Cell and Environment, 2012, 35, 1467-1482.	5.7	101
4	Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant, Cell and Environment, 2016, 39, 2303-2318.	5.7	91
5	Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato. Frontiers in Plant Science, 2016, 7, 1273.	3.6	75
6	The <scp><scp>K⁺</scp></scp> / <scp><scp>H⁺</scp> </scp> antiporter <scp>LeNHX2</scp> increases salt tolerance by improving <scp>K⁺</scp> homeostasis in transgenic tomato. Plant, Cell and Environment, 2013, 36, 2135-2149.	5.7	67
7	Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity. Plant Cell, 2019, 31, 537-554.	6.6	42
8	An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods, 2018, 14, 34.	4.3	34
9	Hemoglobins in the legume– <i>Rhizobium </i> symbiosis. New Phytologist, 2020, 228, 472-484.	7.3	33
10	Transcriptional, metabolic, physiological and developmental responses of switchgrass to phosphorus limitation. Plant, Cell and Environment, 2021, 44, 186-202.	5.7	27
11	Involvement of SISOS2 in tomato salt tolerance. Bioengineered, 2012, 3, 298-302.	3.2	24
12	DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytologist, 2021, 229, 548-562.	7. 3	22
13	Alfalfa (<i>Medicago sativa</i> L.) <i>pho2</i> mutant plants hyperaccumulate phosphate. G3: Genes, Genomes, Genetics, 2022, , .	1.8	10
14	Biofortification of common bean (<i>Phaseolus vulgaris</i> L.) with iron and zinc: Achievements and challenges. Food and Energy Security, 2023, 12, .	4.3	10
15	A Novel Putative Microtubule-Associated Protein Is Involved in Arbuscule Development during Arbuscular Mycorrhiza Formation. Plant and Cell Physiology, 2021, 62, 306-320.	3.1	9
16	A Plant Gene Encoding One-Heme and Two-Heme Hemoglobins With Extreme Reactivities Toward Diatomic Gases and Nitrite. Frontiers in Plant Science, 2020, 11, 600336.	3.6	8
17	Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method. Food Chemistry, 2022, 387, 132900.	8.2	8
18	Increased Ascorbate Biosynthesis Does Not Improve Nitrogen Fixation Nor Alleviate the Effect of Drought Stress in Nodulated Medicago truncatula Plants. Frontiers in Plant Science, 2021, 12, 686075.	3.6	0

#	Article	IF	CITATIONS
19	Involvement of SISOS2 in tomato salt tolerance. Bioengineered Bugs, 2012, 3, .	1.7	0