
Javier MarÃ-a RodrÃ-guez MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7251081/publications.pdf Version: 2024-02-01

Javier MarÃa RodrÃguez

#	Article	IF	CITATIONS
1	Analysis of the Complete Nucleotide Sequence of African Swine Fever Virus. Virology, 1995, 208, 249-278.	2.4	419
2	BA71ΔCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. Journal of Virology, 2017, 91, .	3.4	189
3	Inhibition of Nuclear Factor κB Activation by a Virus-encoded IκB-like Protein. Journal of Biological Chemistry, 1998, 273, 5405-5411.	3.4	122
4	The membrane trafficking protein calpactin forms a complex with bluetongue virus protein NS3 and mediates virus release. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13154-13159.	7.1	110
5	Expression Library Immunization Can Confer Protection against Lethal Challenge with African Swine Fever Virus. Journal of Virology, 2014, 88, 13322-13332.	3.4	101
6	Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology, 1992, 186, 40-52.	2.4	99
7	African swine fever virus transcription. Virus Research, 2013, 173, 15-28.	2.2	93
8	African Swine Fever Virus Structural Protein p54 Is Essential for the Recruitment of Envelope Precursors to Assembly Sites. Journal of Virology, 2004, 78, 4299-4313.	3.4	89
9	Transcriptional analysis of multigene family 110 of African swine fever virus. Journal of Virology, 1992, 66, 6655-6667.	3.4	76
10	Characterization and molecular basis of heterogeneity of the African swine fever virus envelope protein p54. Journal of Virology, 1994, 68, 7244-7252.	3.4	73
11	African Swine Fever Virus Structural Protein pE120R Is Essential for Virus Transport from Assembly Sites to Plasma Membrane but Not for Infectivity. Journal of Virology, 2001, 75, 6758-6768.	3.4	72
12	Repression of African Swine Fever Virus Polyprotein pp220-Encoding Gene Leads to the Assembly of Icosahedral Core-Less Particles. Journal of Virology, 2002, 76, 2654-2666.	3.4	69
13	Genome Sequence of African Swine Fever Virus BA71, the Virulent Parental Strain of the Nonpathogenic and Tissue-Culture Adapted BA71V. PLoS ONE, 2015, 10, e0142889.	2.5	69
14	Genetic manipulation of African swine fever virus: Construction of recombinant viruses expressing the β-galactosidase gene. Virology, 1992, 188, 67-76.	2.4	52
15	The African Swine Fever Virus Nonstructural Protein pB602L Is Required for Formation of the Icosahedral Capsid of the Virus Particle. Journal of Virology, 2006, 80, 12260-12270.	3.4	52
16	African Swine Fever Virus Protein p17 Is Essential for the Progression of Viral Membrane Precursors toward Icosahedral Intermediates. Journal of Virology, 2010, 84, 7484-7499.	3.4	50
17	African Swine Fever Virus pB119L Protein Is a Flavin Adenine Dinucleotide-Linked Sulfhydryl Oxidase. Journal of Virology, 2006, 80, 3157-3166.	3.4	49
18	Antigenic Properties and Diagnostic Potential of African Swine Fever Virus Protein pp62 Expressed in Insect Cells. Journal of Clinical Microbiology, 2006, 44, 950-956.	3.9	47

Javier MarÃa RodrÃguez

#	Article	IF	CITATIONS
19	Transcriptional mapping of a late gene coding for the p12 attachment protein of African swine fever virus. Journal of Virology, 1993, 67, 553-556.	3.4	46
20	African Swine Fever Virus Polyprotein pp62 Is Essential for Viral Core Development. Journal of Virology, 2010, 84, 176-187.	3.4	40
21	Generation of Filamentous Instead of Icosahedral Particles by Repression of African Swine Fever Virus Structural Protein pB438L. Journal of Virology, 2006, 80, 11456-11466.	3.4	38
22	African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration. MBio, 2020, 11, .	4.1	38
23	Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. ELife, 2018, 7, .	6.0	38
24	Association of torque teno virus (TTV) and torque teno mini virus (TTMV) with liver disease among patients coinfected with human immunodeficiency virus and hepatitis C virus. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 289-297.	2.9	37
25	New Insights into Rotavirus Entry Machinery: Stabilization of Rotavirus Spike Conformation Is Independent of Trypsin Cleavage. PLoS Pathogens, 2014, 10, e1004157.	4.7	35
26	The DNA polymerase-encoding gene of African swine fever virus: sequence and transcriptional analysis. Gene, 1993, 136, 103-110.	2.2	32
27	Vectors for the genetic manipulation of African swine fever virus. Journal of Biotechnology, 1995, 40, 121-131.	3.8	32
28	Characterization of theDrosophilamelanogasterMitochondrial Proteome. Journal of Proteome Research, 2005, 4, 1636-1645.	3.7	31
29	Disruption of Nuclear Organization during the Initial Phase of African Swine Fever Virus Infection. Journal of Virology, 2011, 85, 8263-8269.	3.4	31
30	Two putative African swine fever virus helicases similar to yeast †DEAH' pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R. Gene, 1993, 134, 161-174.	2.2	30
31	Multigene families in African swine fever virus: family 505. Journal of Virology, 1994, 68, 2746-2751.	3.4	27
32	African swine fever virus-induced polypeptides in porcine alveolar macrophages and in Vero cells: Two-dimensional gel analysis. Proteomics, 2001, 1, 1447-1456.	2.2	26
33	Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses. PLoS Pathogens, 2017, 13, e1006755.	4.7	26
34	Intranuclear detection of African swine fever virus DNA in several cell types from formalin-fixed and paraffin-embedded tissues using a new in situ hybridisation protocol. Journal of Virological Methods, 2010, 168, 38-43.	2.1	25
35	XTEND: Extending the depth of field in cryo soft X-ray tomography. Scientific Reports, 2017, 7, 45808.	3.3	24
36	Involvement of the Reparative DNA Polymerase Pol X of African Swine Fever Virus in the Maintenance of Viral Genome Stability <i>In Vivo</i> . Journal of Virology, 2013, 87, 9780-9787.	3.4	23

Javier MarÃa RodrÃguez

#	Article	IF	CITATIONS
37	Polypeptides differentially expressed in imaginal discs define the peroxiredoxin family of genes in Drosophila. FEBS Journal, 2000, 267, 487-497.	0.2	17
38	Mechanism of Collapse of Endoplasmic Reticulum Cisternae During African Swine Fever Virus Infection. Traffic, 2012, 13, 30-42.	2.7	17
39	African swine fever virus p10 protein exhibits nuclear import capacity and accumulates in the nucleus during viral infection. Veterinary Microbiology, 2008, 130, 47-59.	1.9	16
40	Nanotechnological Applications Based on Bacterial Encapsulins. Nanomaterials, 2021, 11, 1467.	4.1	15
41	African Swine Fever Virus trans-Prenyltransferase. Journal of Biological Chemistry, 1997, 272, 9417-9423.	3.4	14
42	Highly Efficient Expression of Proteins Encoded by Recombinant Vaccinia Virus in Lymphocytes. Scandinavian Journal of Immunology, 1991, 34, 619-626.	2.7	13
43	The Expression of Heat Shock Protein HSP60A Reveals a Dynamic Mitochondrial Pattern in Drosophila melanogaster Embryos. Journal of Proteome Research, 2008, 7, 2780-2788.	3.7	11
44	Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus. Journal of Virology, 2020, 94, .	3.4	11
45	Structural Insights into Rotavirus Entry. Advances in Experimental Medicine and Biology, 2019, 1215, 45-68.	1.6	9
46	Structure and assembly of double-stranded RNA mycoviruses. Advances in Virus Research, 2020, 108, 213-247.	2.1	9
47	A set of African swine fever virus tandem repeats shares similarities with SAR-like sequences. Journal of General Virology, 1995, 76, 729-740.	2.9	7
48	DNA Repair - On the Pathways to Fixing DNA Damage and Errors. , 2011, , .		7
49	Isolation and Handling of Recombinant Vaccinia Viruses. , 1992, 8, 235-248.		5
50	Rotavirus Binding to Cell Surface Receptors Directly Recruiting α 2 Integrin. Advanced NanoBiomed Research, 0, , 2100077.	3.6	5
51	Constitutive expression of heat shock proteinâ€p23 correlates with proneural territories in imaginal discs ofDrosophila melanogaster. Proteomics, 2005, 5, 3604-3613.	2.2	2
52	Vaccinia Virus as an Expression Vector. , 1992, 8, 219-234.		0
53	Secuenciación de genomas. Arbor, 2004, CLXXVII, 285-310.	0.3	0
54	Determination of Mutation Frequency During Viral DNA Replication. Bio-protocol, 2014, 4, .	0.4	0