
Steffen Schuler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/725097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing Line-of-Block Artifacts in Cardiac Activation Maps Estimated Using ECG Imaging: A Comparison of Source Models and Estimation Methods. IEEE Transactions on Biomedical Engineering, 2022, 69, 2041-2052.	4.2	8
2	Non-Invasive Characterization of Atrial Flutter Mechanisms Using Recurrence Quantification Analysis on the ECG: A Computational Study. IEEE Transactions on Biomedical Engineering, 2021, 68, 914-925.	4.2	19
3	A Reproducible Protocol to Assess Arrhythmia Vulnerability in silico: Pacing at the End of the Effective Refractory Period. Frontiers in Physiology, 2021, 12, 656411.	2.8	18
4	Non-Invasive and Quantitative Estimation of Left Atrial Fibrosis Based on P Waves of the 12-Lead ECG—A Large-Scale Computational Study Covering Anatomical Variability. Journal of Clinical Medicine, 2021, 10, 1797.	2.4	23
5	Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG. Cardiovascular Digital Health Journal, 2021, 2, 126-136.	1.3	30
6	Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach. Mathematics, 2021, 9, 1247.	2.2	49
7	Causes of altered ventricular mechanics in hypertrophic cardiomyopathy: an in-silico study. BioMedical Engineering OnLine, 2021, 20, 69.	2.7	6
8	B-PO05-151 AUTOMATIC CLASSIFICATION OF MACRO-REENTRANT ATRIAL TACHYCARDIA MECHANISMS USING 12-LEAD ECG. Heart Rhythm, 2021, 18, S433-S434.	0.7	0
9	Cobiveco: Consistent biventricular coordinates for precise and intuitive description of position in the heart – with MATLAB implementation. Medical Image Analysis, 2021, 74, 102247.	11.6	16
10	A bi-atrial statistical shape model for large-scale in silico studies of human atria: Model development and application to ECG simulations. Medical Image Analysis, 2021, 74, 102210.	11.6	21
11	Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG. , 2021, , .		1
12	A Fully-Coupled Electro-Mechanical Whole-Heart Computational Model: Influence of Cardiac Contraction on the ECG. Frontiers in Physiology, 2021, 12, 778872.	2.8	10
13	Comparison of Unipolar and Bipolar Voltage Mapping for Localization of Left Atrial Arrhythmogenic Substrate in Patients With Atrial Fibrillation. Frontiers in Physiology, 2020, 11, 575846.	2.8	20
14	In silico validation of electrocardiographic imaging to reconstruct the endocardial and epicardial repolarization pattern using the equivalent dipole layer source model. Medical and Biological Engineering and Computing, 2020, 58, 1739-1749.	2.8	6
15	Optimization Framework to Identify Constitutive Law Parameters of the Human Heart. Current Directions in Biomedical Engineering, 2020, 6, 95-98.	0.4	6
16	Using a Spatio-Temporal Basis for ECG Imaging of Ventricular Pacings: Insights From Simulations and First Application to Clinical Data. , 2019, 2019, 1559-1562.		1
17	Spatial Downsampling of Surface Sources in the Forward Problem of Electrocardiography. Lecture Notes in Computer Science, 2019, , 29-36.	1.3	6
18	Correcting Undersampled Cardiac Sources in Equivalent Double Layer Forward Simulations. Lecture Notes in Computer Science, 2019, 11504, 147-155.	1.3	4

STEFFEN SCHULER

#	Article	IF	CITATIONS
19	Comparison of Activation Times Estimation for Potential-Based ECG Imaging. , 2019, 46, .		3
20	Effects of local activation times on the tension development of human cardiomyocytes in a computational model. Current Directions in Biomedical Engineering, 2018, 4, 247-250.	0.4	1
21	Effects of local activation times on the tension development of human cardiomyocytes in a computational model. Current Directions in Biomedical Engineering, 2018, 4, 101-104.	0.4	0
22	Electrocardiographic Imaging Using a Spatio-Temporal Basis of Body Surface Potentials—Application to Atrial Ectopic Activity. Frontiers in Physiology, 2018, 9, 1126.	2.8	5
23	Simulation of intracardiac electrograms around acute ablation lesions. Current Directions in Biomedical Engineering, 2016, 2, 607-610.	0.4	2
24	Characterization of Radiofrequency Ablation Lesion Development Based on Simulated and Measured Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 2014, 61, 2467-2478.	4.2	17
25	Comparison of simulated and clinical intracardiac electrograms. , 2013, 2013, 6858-61.		3
26	Evaluating Changes in Electrogram Morphology during Radiofrequency Ablation of Cardiac Arrhythmias. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	0
27	Influence of Catheter Orientation, Tissue Thickness and Conduction Velocity on the Intracardiac Electrogram. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	9
28	ECG Imaging of Simulated Atrial Fibrillation: Imposing Epi-Endocardial Similarity Facilitates the Reconstruction of Transmembrane Voltages. , 0, , .		3
29	Influence of Geometrical Properties for the Calculation of a Pressure-Free Whole Heart Geometry. , 0, , .		0
30	Automatic ECG-based Discrimination of 20 Atrial Flutter Mechanisms: Influence of Atrial and Torso Geometries. , 0, , .		5
31	Consequences of Using an Orthotropic Stress Tensor for Left Ventricular Systole. , 0, , .		3
32	Forcing Transmembrane Voltages to Decrease Slowly: A Temporal Regularization for ECG Imaging. , 0, ,		0
33	Delay-Based Regularization for ECG Imaging of Transmembrane Voltages. , 0, , .		1