List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7250846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Materials, 2019, 16, 545-573.	9.5	489
2	2-Methylimidazole-Derived Ni–Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 15510-15524.	4.0	374
3	Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Research, 2016, 9, 692-702.	5.8	351
4	Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Scientific Reports, 2017, 7, 14025.	1.6	310
5	Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12185-12214.	5.2	245
6	Guanidinium thiocyanate selective Ostwald ripening induced large grain for high performance perovskite solar cells. Nano Energy, 2017, 41, 476-487.	8.2	184
7	Cerium Based Metal–Organic Frameworks as an Efficient Separator Coating Catalyzing the Conversion of Polysulfides for High Performance Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 1923-1931.	7.3	184
8	Solid-State Composite Electrolyte Lil/3-Hydroxypropionitrile/SiO2for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2005, 127, 6394-6401.	6.6	176
9	Ultrathin NiCo ₂ S ₄ @graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 5856-5861.	5.2	164
10	Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy and Environmental Science, 2019, 12, 2054-2079.	15.6	158
11	Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Materials, 2019, 16, 434-454.	9.5	156
12	10% Efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width. Solar Energy Materials and Solar Cells, 2016, 149, 242-249.	3.0	153
13	An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 2784-2793.	5.2	131
14	Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Scientific Reports, 2019, 9, 718.	1.6	130
15	Enhanced perovskite electronic properties via a modified lead(<scp>ii</scp>) chloride Lewis acid–base adduct and their effect in high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 5195-5203.	5.2	128
16	Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles study. Organic Electronics, 2018, 59, 99-106.	1.4	123
17	Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Materials Horizons, 2018, 5, 529-535.	6.4	119
18	Progress in research on the stability of organometal perovskite solar cells. Solar Energy, 2016, 123, 74-87.	2.9	117

#	Article	IF	CITATIONS
19	Progress in Thin Film Solar Cells Based on <pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext> (mathvariant="bold">>2 </mml:mtext></mml:mrow></mml:mrow></mml:mrow></mml:msub> <mml:msub> <mml:mrow> <mml:mtext> ZnSnS </mml:mtext> </mml:mrow></mml:msub></mml:mrow></pre> mathvariant="bold">>4 . International Journal of	Cu:/mml 1174 row>	ext>< mmai:mn
20	Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction. Electrochimica Acta, 2017, 257, 118-127.	2.6	114
21	Transport and Interfacial Transfer of Electrons in Dye-Sensitized Solar Cells Utilizing a Co(dbbip) ₂ Redox Shuttle. Journal of Physical Chemistry C, 2010, 114, 14300-14306.	1.5	108
22	Electron Diffusion and Back Reaction in Dye-Sensitized Solar Cells: The Effect of Nonlinear Recombination Kinetics. Journal of Physical Chemistry Letters, 2010, 1, 748-751.	2.1	107
23	Electrochemically Exfoliated Graphene for Electrode Films: Effect of Graphene Flake Thickness on the Sheet Resistance and Capacitive Properties. Langmuir, 2013, 29, 13307-13314.	1.6	96
24	Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Materials, 2019, 19, 56-61.	9.5	93
25	A Comparison of Different Methods To Determine the Electron Diffusion Length in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 18125-18133.	1.5	92
26	Tailoring Crystal Structure of FA _{0.83} Cs _{0.17} PbI ₃ Perovskite Through Guanidinium Doping for Enhanced Performance and Tunable Hysteresis of Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806479.	7.8	87
27	2D–3D Mixed Organic–Inorganic Perovskite Layers for Solar Cells with Enhanced Efficiency and Stability Induced by <i>n</i> -Propylammonium Iodide Additives. ACS Applied Materials & Interfaces, 2019, 11, 29753-29764.	4.0	83
28	Influence of Electrolyte Cations on Electron Transport and Electron Transfer in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 10468-10475.	1.5	79
29	CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium ion batteries. Electrochimica Acta, 2018, 292, 895-902.	2.6	78
30	Octadecylamineâ€Functionalized Singleâ€Walled Carbon Nanotubes for Facilitating the Formation of a Monolithic Perovskite Layer and Stable Solar Cells. Advanced Functional Materials, 2018, 28, 1705545.	7.8	73
31	Plasma-induced on-surface sulfur vacancies in NiCo ₂ S ₄ enhance the energy storage performance of supercapatteries. Journal of Materials Chemistry A, 2020, 8, 9278-9291.	5.2	73
32	Hindered Formation of Photoinactive δ-FAPbI ₃ Phase and Hysteresis-Free Mixed-Cation Planar Heterojunction Perovskite Solar Cells with Enhanced Efficiency via Potassium Incorporation. Journal of Physical Chemistry Letters, 2018, 9, 2113-2120.	2.1	72
33	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017, 5, 22542-22558.	5.2	70
34	High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound. Journal of Power Sources, 2017, 364, 9-15.	4.0	70
35	A highly efficient electrocatalyst based on amorphous Pd–Cu–S material for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18793-18800.	5.2	70
36	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5315-5323.	5.2	70

#	Article	IF	CITATIONS
37	Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Metals, 2021, 40, 440-447.	3.6	67
38	Earth-abundant amorphous catalysts for electrolysis of water. Chinese Journal of Catalysis, 2017, 38, 991-1005.	6.9	66
39	Effect of Iodine Addition on Solid-State Electrolyte Lil/3-Hydroxypropionitrile (1:4) for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 5970-5974.	1.2	65
40	Growth of Cu ₂ ZnSnSe ₄ Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 10283-10292.	4.0	65
41	Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars. Journal of Materials Chemistry B, 2019, 7, 1300-1310.	2.9	63
42	Spiro-OMeTAD or CuSCN as a preferable hole transport material for carbon-based planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12723-12734.	5.2	63
43	All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon. Journal of Energy Chemistry, 2017, 26, 1260-1266.	7.1	62
44	Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 311-319.	1.5	62
45	Free-standing amorphous nanoporous nickel cobalt phosphide prepared by electrochemically delloying process as a high performance energy storage electrode material. Energy Storage Materials, 2019, 17, 300-308.	9.5	60
46	Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation. ACS Applied Materials & Interfaces, 2019, 11, 28431-28441.	4.0	60
47	Thienylvinylenethienyl and Naphthalene Core Substituted with Triphenylamines—Highly Efficient Hole Transporting Materials and Their Comparative Study for Inverted Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700105.	3.1	59
48	Low Hysteresis Perovskite Solar Cells Using an Electron-Beam Evaporated WO _{3–<i>x</i>} Thin Film as the Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 5456-5464.	2.5	58
49	Driving forces of national and regional carbon intensity changes in China: Temporal and spatial multiplicative structural decomposition analysis. Journal of Cleaner Production, 2019, 213, 1380-1410.	4.6	58
50	ZnO Nanocones with High-Index {101Ì1} Facets for Enhanced Energy Conversion Efficiency of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 13836-13844.	1.5	55
51	Mn ₃ O ₄ Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23900-23909.	4.0	55
52	Phase-selective hydrothermal synthesis of Cu ₂ ZnSnS ₄ nanocrystals: the effect of the sulphur precursor. CrystEngComm, 2014, 16, 4306-4313.	1.3	54
53	Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. Nano Energy, 2020, 69, 104412.	8.2	54
54	A zinc bromine "supercapattery―system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Materials Horizons, 2020, 7, 495-503.	6.4	54

#	Article	IF	CITATIONS
55	New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Science China Materials, 2017, 60, 392-398.	3.5	53
56	Enhancing Photoactivity of TiO ₂ (B)/Anatase Core–Shell Nanofibers by Selectively Doping Cerium lons into the TiO ₂ (B) Core. Chemistry - A European Journal, 2013, 19, 5113-5119.	1.7	51
57	Novel fabrication of Ni3S2/MnS composite as high performance supercapacitor electrode. Journal of Alloys and Compounds, 2017, 722, 662-668.	2.8	51
58	Novel ruthenium bipyridyl dyes with S-donor ligands and their application in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 196-204.	2.0	50
59	Acene-based organic semiconductors for organic light-emitting diodes and perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 9017-9029.	2.7	50
60	Protic ionic liquid assisted solution processing of lead halide perovskites with water, alcohols and acetonitrile. Nano Energy, 2018, 51, 632-638.	8.2	50
61	Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics. Computational Materials Science, 2019, 169, 109118.	1.4	50
62	Electrochemically induced surface reconstruction of Ni o oxide nanosheet arrays for hybrid supercapacitors. Exploration, 2021, 1, .	5.4	49
63	Facile synthesis of Sb ₂ S ₃ /MoS ₂ heterostructure as anode material for sodium-ion batteries. Nanotechnology, 2018, 29, 335401.	1.3	48
64	Lithium bis(trifluoromethanesulfonyl)imide assisted dual-functional separator coating materials based on covalent organic frameworks for high-performance lithium–selenium sulfide batteries. Journal of Materials Chemistry A, 2019, 7, 16323-16329.	5.2	48
65	One-step synthesis of high quality kesterite Cu ₂ ZnSnS ₄ nanocrystals – a hydrothermal approach. Beilstein Journal of Nanotechnology, 2014, 5, 438-446.	1.5	47
66	Effect of Inorganic Iodides on Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15125-15131.	1.5	45
67	Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes. Physical Chemistry Chemical Physics, 2011, 13, 17359.	1.3	45
68	On the growth process of Cu2ZnSn(S,Se)4 absorber layer formed by selenizing Cu–ZnS–SnS precursors and its photovoltaic performance. Solar Energy Materials and Solar Cells, 2015, 132, 363-371.	3.0	45
69	Ultrafast near infrared sintering of TiO ₂ layers on metal substrates for dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2011, 19, 482-486.	4.4	44
70	Sulfophilic and lithophilic sites in bimetal nickel-zinc carbide with fast conversion of polysulfides for high-rate Li-S battery. Chemical Engineering Journal, 2021, 404, 126566.	6.6	44
71	Enhanced Electron Lifetime of CdSe/CdS Quantum Dot (QD) Sensitized Solar Cells Using ZnSe Core–Shell Structure with Efficient Regeneration of Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2297-2307.	1.5	43
72	Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation. RSC Advances, 2015, 5, 82346-82350.	1.7	43

#	Article	IF	CITATIONS
73	Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance. Electrochimica Acta, 2020, 353, 136532.	2.6	43
74	Molecular Engineering of Simple Benzene–Arylamine Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 27657-27663.	4.0	42
75	High performance carbon-based planar perovskite solar cells by hot-pressing approach. Solar Energy Materials and Solar Cells, 2020, 210, 110517.	3.0	42
76	Characterization of Electron Trapping in Dye-Sensitized Solar Cells by Near-IR Transmittance Measurements. Journal of Physical Chemistry C, 2009, 113, 8532-8536.	1.5	41
77	Fast Hole Surface Conduction Observed for Indoline Sensitizer Dyes Immobilized at Fluorine-Doped Tin Oxideâ^'TiO2 Surfaces. Journal of Physical Chemistry C, 2010, 114, 11822-11828.	1.5	41
78	Free-standing NiCo2S4@VS2 nanoneedle array composite electrode for high performance asymmetric supercapacitor application. Journal of Alloys and Compounds, 2019, 771, 274-280.	2.8	41
79	Perovskite solar cells based self-charging power packs: Fundamentals, applications and challenges. Nano Energy, 2022, 94, 106910.	8.2	41
80	Enhancing cycling stability of transition metal-based layered double hydroxides through a self-sacrificial strategy for hybrid supercapacitors. Electrochimica Acta, 2020, 334, 135586.	2.6	39
81	Tuning the Amount of Oxygen Vacancies in Sputterâ€Deposited SnO _{<i>x</i>} films for Enhancing the Performance of Perovskite Solar Cells. ChemSusChem, 2018, 11, 3096-3103.	3.6	38
82	Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 2021, 23, 5302-5336.	4.6	38
83	Reduced electron recombination of dye-sensitized solar cells based on TiO ₂ spheres consisting of ultrathin nanosheets with [001] facet exposed. Beilstein Journal of Nanotechnology, 2012, 3, 378-387.	1.5	37
84	Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	37
85	Increased charge transfer of Poly (ethylene oxide) based electrolyte by addition of small molecule and its application in dye-sensitized solar cells. Electrochimica Acta, 2013, 87, 526-531.	2.6	37
86	Carbon concentration dependent grain growth of Cu ₂ ZnSnS ₄ thin films. RSC Advances, 2015, 5, 20178-20185.	1.7	37
87	Inorganic p-type semiconductors and carbon materials based hole transport materials for perovskite solar cells. Chinese Chemical Letters, 2018, 29, 1242-1250.	4.8	37
88	One-pot synthesis of 2D Ti3C2/Ni2CO3(OH)2 composite as electrode material with superior capacity and high stability for hybrid supercapacitor. Electrochimica Acta, 2018, 292, 168-179.	2.6	35
89	How real time pricing modifies Chinese households' electricity consumption. Journal of Cleaner Production, 2018, 178, 776-790	4.6	34
90	Three-Dimensional (3D) Nanostructured Skeleton Substrate Composed of Hollow Carbon Fiber/Carbon Nanosheet/ZnO for Stable Lithium Anode. ACS Applied Materials & Interfaces, 2021, 13, 3078-3088.	4.0	34

#	Article	IF	CITATIONS
91	Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chinese Chemical Letters, 2019, 30, 1115-1120.	4.8	33
92	An alternative ionic liquid based electrolyte for dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2004, 3, 918.	1.6	32
93	Highâ€Performance Plasmaâ€Enabled Biorefining of Microalgae to Valueâ€Added Products. ChemSusChem, 2019, 12, 4976-4985.	3.6	32
94	Strategically Constructed Bilayer Tin (IV) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cells. Small, 2020, 16, e1901466.	5.2	32
95	Potassium Doping to Enhance Green Photoemission of Lightâ€Emitting Diodes Based on CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2020, 8, 2000742.	3.6	32
96	Emergence of Niâ€Based Chalcogenides (S and Se) for Clean Energy Conversion and Storage. Small, 2021, 17, e2100361.	5.2	32
97	Two-dimensional nanosheets constituted trimetal Ni-Co-Mn sulfide nanoflower-like structure for high-performance hybrid supercapacitors. Applied Surface Science, 2021, 565, 150482.	3.1	32
98	Characterization of Interactions among 3-Hydroxypropionitrile/Lil Electrolytes. Electrochemical and Solid-State Letters, 2004, 7, A302.	2.2	31
99	Enhanced morphology and stability of high-performance perovskite solar cells with ultra-smooth surface and high fill factor via crystal growth engineering. Sustainable Energy and Fuels, 2017, 1, 907-914.	2.5	30
100	Binary NiCu layered double hydroxide nanosheets for enhanced energy storage performance as supercapacitor electrode. Science China Materials, 2018, 61, 296-302.	3.5	30
101	Structural, electronic and optical properties of lead-free antimony-copper based hybrid double perovskites for photovoltaics and optoelectronics by first principles calculations. Computational Materials Science, 2021, 186, 110009.	1.4	30
102	Enhanced visible-light-driven photocatalytic performance of Ag/AgGaO2 metal semiconductor heterostructures. Journal of Alloys and Compounds, 2017, 701, 16-22.	2.8	29
103	Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors. Renewable Energy, 2020, 162, 2306-2317.	4.3	29
104	A facile, environmentally friendly synthesis of strong photo-emissive methylammonium lead bromide perovskite nanocrystals enabled by ionic liquids. Green Chemistry, 2020, 22, 3433-3440.	4.6	29
105	Dimensionality-Controlled Surface Passivation for Enhancing Performance and Stability of Perovskite Solar Cells via Triethylenetetramine Vapor. ACS Applied Materials & Interfaces, 2020, 12, 6651-6661.	4.0	29
106	High capacitive amorphous barium nickel phosphate nanofibers for electrochemical energy storage. RSC Advances, 2016, 6, 45986-45992.	1.7	27
107	Bacteria Death and Osteoblast Metabolic Activity Correlated to Hydrothermally Synthesised TiO2 Surface Properties. Molecules, 2019, 24, 1201.	1.7	27
108	Flexible quasi-solid-state dual-ion asymmetric supercapacitor based on Ni(OH)2 and Nb2O5 nanosheet arrays. Green Energy and Environment, 2019, 4, 382-390.	4.7	27

#	Article	IF	CITATIONS
109	Lowâ€Dimensionalâ€Networked Perovskites with Aâ€Siteâ€Cation Engineering for Optoelectronic Devices. Small Methods, 2021, 5, e2001147.	4.6	27
110	Carbon-encapsulated Bi2Te3 derived from metal-organic framework as anode for highly durable lithium and sodium storage. Journal of Alloys and Compounds, 2020, 837, 155536.	2.8	26
111	Facile synthesis of MSnO3 (M=Mn, Co, Zn)/reduced graphene oxide nanocomposites as anode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 784, 88-95.	2.8	25
112	Boosting Capacitive Sodium-Ion Storage in Electrochemically Exfoliated Graphite for Sodium-Ion Capacitors. ACS Applied Materials & amp; Interfaces, 2020, 12, 52635-52642.	4.0	25
113	Self-charging flexible solar capacitors based on integrated perovskite solar cells and quasi-solid-state supercapacitors fabricated at low temperature. Journal of Power Sources, 2020, 479, 229046.	4.0	25
114	Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightness. Nano-Micro Letters, 2022, 14, 69.	14.4	24
115	Effects of metal ion concentration on electrodeposited CuZnSn film and its application in kesterite Cu ₂ ZnSnS ₄ solar cells. RSC Advances, 2015, 5, 65114-65122.	1.7	23
116	Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells. Journal of Applied Physics, 2017, 122, .	1.1	23
117	Approaches to Enhancing Electrical Conductivity of Pristine Metal–Organic Frameworks for Supercapacitor Applications. Small, 2022, 18, .	5.2	22
118	Polymer-in-salt like conduction behavior of small-molecule electrolytes. Chemical Communications, 2004, , 2186.	2.2	21
119	Ion transport in small-molecule electrolytes based on LiI/3-hydroxypropionitrile with high salt contents. Electrochimica Acta, 2007, 52, 2039-2044.	2.6	21
120	One-step synthesis of titanium oxide with trilayer structure for dye-sensitized solar cells. Applied Physics Letters, 2011, 98, 133113.	1.5	21
121	1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1900918.	1.8	21
122	Self-assembled carbon dot-wrapped perovskites enable light trapping and defect passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 7508-7521.	5.2	21
123	Oneâ€Pot Synthesis of CuCo 2 S 4 Subâ€Microspheres for Highâ€Performance Lithiumâ€ / Sodiumâ€ i on Batteries. ChemElectroChem, 2019, 6, 1558-1566.	1.7	20
124	Size-dependent capacitive behavior of homogeneous MnO nanoparticles on carbon cloth as electrodes for symmetric solid-state supercapacitors with high performance. Electrochimica Acta, 2019, 307, 442-450.	2.6	20
125	Metallic Nanomesh with Disordered Dual-Size Apertures As Wide-Viewing-Angle Transparent Conductive Electrode. ACS Applied Materials & Interfaces, 2016, 8, 22768-22773.	4.0	19
126	The effect of ethylene-amine ligands enhancing performance and stability of perovskite solar cells. Journal of Power Sources, 2020, 463, 228210.	4.0	19

#	Article	IF	CITATIONS
127	Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication. Applied Surface Science, 2017, 407, 427-433.	3.1	18
128	One-step synthesis of Pt-Pd catalyst nanoparticles supported on few-layer graphene for methanol oxidation. Current Applied Physics, 2018, 18, 898-904.	1.1	18
129	Fluorine substitution enabling pseudocapacitive intercalation of sodium ions in niobium oxyfluoride. Journal of Materials Chemistry A, 2019, 7, 20813-20823.	5.2	18
130	Efficiency enhancement of Cu2ZnSnS4 thin film solar cells by chromium doping. Solar Energy Materials and Solar Cells, 2019, 201, 110057.	3.0	18
131	Synthesis of Co Ni1-S2 electrode material with a greatly enhanced electrochemical performance for supercapacitors by in-situ solid-state transformation. Journal of Alloys and Compounds, 2019, 803, 950-957.	2.8	18
132	Inorganic Aqueous Anionic Redox Liquid Electrolyte for Supercapacitors. Advanced Materials Technologies, 2022, 7, 2100501.	3.0	18
133	In-Situ Grown Ni(OH) ₂ Nanosheets on Ni Foam for Hybrid Supercapacitors with High Electrochemical Performance. Journal of the Electrochemical Society, 2018, 165, A882-A890.	1.3	17
134	Spectroscopic Insight into Efficient and Stable Hole Transfer at the Perovskite/Spiro-OMeTAD Interface with Alternative Additives. ACS Applied Materials & Interfaces, 2021, 13, 5752-5761.	4.0	17
135	N-Aryl stilbazolium dyes as sensitizers for solar cells. Dyes and Pigments, 2012, 92, 766-777.	2.0	16
136	Effect of different thermo-treatment at relatively low temperatures on the properties of indiumâ€tin-oxide thin films. Thin Solid Films, 2017, 636, 702-709.	0.8	16
137	In-situ growth of nanowire WO2.72 on carbon cloth as a binder-free electrode for flexible asymmetric supercapacitors with high performance. Journal of Energy Chemistry, 2019, 29, 58-64.	7.1	16
138	Are Metal Halide Perovskite Solar Cells Ready for Space Applications?. Journal of Physical Chemistry Letters, 2022, 13, 2908-2920.	2.1	16
139	An ultraviolet selective photodetector based on a nanocrystalline TiO2 photoelectrochemical cell. Sensors and Actuators A: Physical, 2011, 171, 87-92.	2.0	15
140	Highly Efficient Dye-Sensitized Solar Cells Using a Composite Electrolyte Consisting of Lil(CH 3 OH) 4 -I 2 , SiO 2 Nano-Particles and an Ionic Liquid. Chinese Physics Letters, 2004, 21, 1828-1830.	1.3	14
141	Highly efficient dye-sensitized solar cells using a composite electrolyte. Comptes Rendus Chimie, 2006, 9, 627-630.	0.2	14
142	Polyacrylic Acid Assisted Synthesis of Cu ₂ ZnSnS ₄ by Hydrothermal Method. Science of Advanced Materials, 2014, 6, 1467-1474.	0.1	14
143	Dinuclear Ru-Cu Complexes: Electronic Characterisation and Application to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry, 2011, 2011, 589-596.	1.0	13
144	Strain Mediated Bandgap Reduction, Light Spectrum Broadening, and Carrier Mobility Enhancement of Methylammonium Lead/Tin Iodide Perovskites. Particle and Particle Systems Characterization, 2017, 34, 1600288.	1.2	13

#	Article	IF	CITATIONS
145	A Precursor Stacking Strategy to Boost Open-Circuit Voltage of Cu ₂ ZnSnS ₄ Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 856-863.	1.5	13
146	Improving the performance of arylamine-based hole transporting materials in perovskite solar cells: Extending π-conjugation length or increasing the number of side groups?. Journal of Energy Chemistry, 2018, 27, 1409-1414.	7.1	13
147	Sulfur-doped mesoporous carbon <i>via</i> thermal reduction of CS ₂ by Mg for high-performance supercapacitor electrodes and Li-ion battery anodes. RSC Advances, 2018, 8, 19964-19970.	1.7	13
148	UV-ozone induced surface passivation to enhance the performance of Cu2ZnSnS4 solar cells. Solar Energy Materials and Solar Cells, 2019, 200, 109892.	3.0	13
149	Highly accessible hierarchical porous carbon from a bi-functional ionic liquid bulky gel: high-performance electrochemical double layer capacitors. Journal of Materials Chemistry A, 2019, 7, 25297-25304.	5.2	13
150	Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications. Frontiers of Chemical Science and Engineering, 2022, 16, 475-483.	2.3	13
151	Evaluation of Particle Beam Lithography for Fabrication of Metallic Nano-structures. Procedia Manufacturing, 2019, 30, 261-267.	1.9	12
152	Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3â^'Cl films. Journal of Colloid and Interface Science, 2015, 453, 9-14.	5.0	11
153	Low-cost, large-scale, one-pot synthesis of C/Ni3(NO3)2(OH)4 composites for high performance supercapacitor. Materials Chemistry and Physics, 2018, 217, 291-299.	2.0	11
154	In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices. Chinese Chemical Letters, 2022, 33, 2669-2676.	4.8	11
155	Perovskite Solar Cells Based on Nanocrystalline SnO2 Material with Extremely Small Particle Sizes. Australian Journal of Chemistry, 2015, 68, 1783.	0.5	10
156	Electrochemical performances of Na2MnSiO4 as an energy storage material in sodium-ion capacitors. Journal of Applied Electrochemistry, 2017, 47, 343-349.	1.5	10
157	Thermal effect on CZTS solar cells in different process of ZnO/ITO window layer fabrication. Sustainable Materials and Technologies, 2018, 18, e00078.	1.7	10
158	Investigation of mechanical properties and morphology of hydrothermally manufactured titanium dioxide nanostructured surfaces. Procedia Manufacturing, 2019, 30, 373-379.	1.9	10
159	Fabrication of dual function disposable substrates for spectroelectrochemical nanosensing. Sensors and Actuators B: Chemical, 2019, 287, 9-17.	4.0	10
160	Facile synthesis of Sb/CNT nanocomposite as anode material for sodium-ion batteries. Functional Materials Letters, 2018, 11, 1850004.	0.7	9
161	Band alignment tuning at Mo/CZTS back contact interface through surface oxidation states control of Mo substrate. Solar Energy Materials and Solar Cells, 2021, 229, 111141.	3.0	9
162	Enhanced visibleâ€lightâ€driven photocatalytic activities of LiInO ₂ by Mo ⁶⁺ â€doping strategy. Journal of the American Ceramic Society, 2017, 100, 2781-2789.	1.9	8

#	Article	IF	CITATIONS
163	Methylammonium thiocyanate seeds assisted heterogeneous nucleation for achieving high-performance perovskite solar cells. Applied Surface Science, 2022, 592, 153206.	3.1	8
164	Investigation of the electrochemical growth of a Cu–Zn–Sn film on a molybdenum substrate using a citrate solution. Journal of Applied Electrochemistry, 2016, 46, 769-778.	1.5	7
165	Controlling the adsorption behavior of hydrogen at the interface of polycrystalline CVD graphene. International Journal of Hydrogen Energy, 2018, 43, 18735-18744.	3.8	7
166	Ultrathin Ni _{1â^'} <i>_x</i> Co <i>_x</i> S ₂ nanoflakes as high energy density electrode materials for asymmetric supercapacitors. Beilstein Journal of Nanotechnology, 2019, 10, 2207-2216.	1.5	7
167	Enlarging Surface/Bulk Ratios of NiO Nanoparticles toward High Utilization and Rate Capability for Supercapacitors. Particle and Particle Systems Characterization, 2020, 37, 1900344.	1.2	7
168	Ruthenium(II) dichloro or dithiocyanato complexes with 4,4′:2′,2″:4″,4‴-quaterpyridinium ligands: Tc photosensitisers with enhanced low-energy absorption properties. Polyhedron, 2013, 50, 622-635.	wards 1.0	6
169	Optimization of Mo/Cr bilayer back contacts for thin-film solar cells. Beilstein Journal of Nanotechnology, 2018, 9, 2700-2707.	1.5	6
170	Photocatalytic and Photovoltaic Activities of TiO2 Architectures with Dominant {001} Facets. Materials Focus, 2012, 1, 136-141.	0.4	5
171	Enhanced Photocatalytic Activity of Titanium Oxide Nanotubes After Heating Treatment. Journal of Nanoscience and Nanotechnology, 2013, 13, 1141-1144.	0.9	4
172	Morphology evolution and stability of Cu2ZnSnS4 nanocrystals in sodium halides salt solution. Thin Solid Films, 2016, 615, 305-310.	0.8	4
173	Band Alignment with Selfâ€Assembled 2D Layer of Carbon Derived from Waste to Balance Charge Injection in Perovskite Crystals Based Rigid and Flexible Light Emitting Diodes. Advanced Materials Technologies, 2022, 7, 2100583.	3.0	4
174	Thin Film Solar Cells Based on Cu2ZnSnS4 Absorber. , 2012, , 1011-1018.		3
175	Preface: Innovative electrode materials for supercapacitors. Science China Materials, 2018, 61, 131-132.	3.5	3
176	Hierarchical ternary composites using coaxial polyphosphazene-coated MoO3 nanowires as substrate for advanced supercapacitors. Journal of Alloys and Compounds, 2022, 905, 164241.	2.8	3
177	Determination of Dimethyl Sulfide in Gas Samples by Single Photon Ionization Time of Flight Mass Spectrometry. Analytical Letters, 2014, 47, 2003-2011.	1.0	2
178	Influence of addition of larger particles into 3-nm particles of TiO 2 film on the performance of dye-sensitized solar cells. , 2007, , .		1
179	Size control of Cu ₂ ZnSnS ₄ (CZTS) nanocrystals in the colloidal medium synthesis. Proceedings of SPIE, 2013, , .	0.8	1
180	Precisely Controlled Synthesis of High Quality Kesterite Cu2ZnSnS4 Thin Film via Co-Electrodeposited CuZnSn Alloy Film. Journal of Nanoscience and Nanotechnology, 2016, 16, 5701-5706.	0.9	1

#	Article	lF	CITATIONS
181	Effects of TiCl ₄ treatment on the performance of CdSe/CdS-sensitised solar cells. Proceedings of SPIE, 2013, , .	0.8	0
182	Tuning the Amount of Oxygen Vacancies in Sputter-Deposited SnO x films for Enhancing the Performance of Perovskite Solar Cells. ChemSusChem, 2018, 11, 3022-3022.	3.6	0
183	Room After Everyone Reservoir Project Environmental Assessment. DEStech Transactions on Computer Science and Engineering, 2017, , .	0.1	0
184	Mechanical Design and Mechanical Reprocessing Technology to Explore. DEStech Transactions on Engineering and Technology Research, 2017, , .	0.0	0
185	Investigation of the Doping Effect on Cu2ZnSnS4 (CZTS) Thin Film Properties for Photovoltaic Applications. , 0, , .		0
186	Enhanced Efficiency and Stability of Perovskite Solar Cells Enabled by Alkaline-Earth Bis(trifluoromethanesulfonimide) Additives Engineering. , 0, , .		0
187	Are Metal Halide Perovskite Solar Cells Ready for Space Applications?. , 0, , .		0