Detlef Neumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7250490/publications.pdf

Version: 2024-02-01

66 papers

2,298 citations

185998 28 h-index 223531 46 g-index

67 all docs

67
docs citations

67 times ranked 2640 citing authors

#	Article	IF	CITATIONS
1	Sequential Autophosphorylation Steps in the Interleukin-1 Receptor-associated Kinase-1 Regulate its Availability as an Adapter in Interleukin-1 Signaling. Journal of Biological Chemistry, 2004, 279, 5227-5236.	1.6	204
2	Interleukin-1-induced cyclooxygenase 2 expression is suppressed by cyclosporin A in rat mesangial cells. Kidney International, 1994, 45, 150-158.	2.6	165
3	Molecular and cellular analysis of human histamine receptor subtypes. Trends in Pharmacological Sciences, 2013, 34, 33-58.	4.0	152
4	Norovirus Triggered Microbiota-driven Mucosal Inflammation in Interleukin 10-deficient Mice. Inflammatory Bowel Diseases, 2014, 20, 431-443.	0.9	131
5	IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14181-14186.	3.3	118
6	Paradoxical Stimulatory Effects of the "Standard―Histamine H ₄ -Receptor Antagonist JNJ777120: the H ₄ Receptor Joins the Club of 7 Transmembrane Domain Receptors Exhibiting Functional Selectivity. Molecular Pharmacology, 2011, 79, 631-638.	1.0	82
7	Commercially available antibodies against human and murine histamine H4-receptor lack specificity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 125-135.	1.4	69
8	Modulation of behavior by the histaminergic system: Lessons from HDC-, H3R- and H4R-deficient mice. Neuroscience and Biobehavioral Reviews, 2014, 47, 101-121.	2.9	69
9	Incomplete activation of human eosinophils via the histamine H4-receptor: Evidence for ligand-specific receptor conformations. Biochemical Pharmacology, 2012, 84, 192-203.	2.0	65
10	The Membrane Form of the Type II IL-1 Receptor Accounts for Inhibitory Function. Journal of Immunology, 2000, 165, 3350-3357.	0.4	64
11	Model of interaction of the IL-1 receptor accessory protein IL-1RAcP with the IL-1 \hat{l}^2 /IL-1RIcomplex. FEBS Letters, 2001, 499, 65-68.	1.3	64
12	ILâ€18 Activity in Systemic Lupus Erythematosus. Annals of the New York Academy of Sciences, 2009, 1173, 301-309.	1.8	60
13	Interactions of Histamine H ₁ -Receptor Agonists and Antagonists with the Human Histamine H ₄ -Receptor. Molecular Pharmacology, 2009, 76, 1019-1030.	1.0	51
14	Strain-specific colitis susceptibility in IL10-deficient mice depends on complex gut microbiota–host interactions. Inflammatory Bowel Diseases, 2012, 18, 943-954.	0.9	45
15	A CMP-sialic acid transporter cloned from Arabidopsis thaliana. Carbohydrate Research, 2008, 343, 2148-2152.	1.1	42
16	Modulation of behavior by the histaminergic system: Lessons from H1R-and H2R-deficient mice. Neuroscience and Biobehavioral Reviews, 2014, 42, 252-266.	2.9	42
17	Interleukinâ€4 administration improves muscle function, adult myogenesis, and lifespan of colon carcinomaâ€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 783-801.	2.9	42
18	Does the Histamine H ₄ Receptor Have a Pro- or Anti-Inflammatory Role in Murine Bronchial Asthma?. Pharmacology, 2010, 85, 217-223.	0.9	40

#	Article	IF	Citations
19	Lymphocytes from Autoimmune MRL <i>lpr/lpr</i> Mice Are Hyperresponsive to IL-18 and Overexpress the IL-18 Receptor Accessory Chain. Journal of Immunology, 2001, 166, 3757-3762.	0.4	36
20	IL-1?-induced phosphorylation of PKB/Akt depends on the presence of IRAK-1. European Journal of Immunology, 2002, 32, 3689-3698.	1.6	35
21	The death domain of IRAK-1: An oligomerization domain mediating interactions with MyD88, Tollip, IRAK-1, and IRAK-4. Biochemical and Biophysical Research Communications, 2007, 354, 1089-1094.	1.0	34
22	Evidence for ligand-specific conformations of the histamine H2-receptor in human eosinophils and neutrophils. Biochemical Pharmacology, 2012, 84, 1174-1185.	2.0	34
23	Analysis of Histamine Receptor Knockout Mice in Models of Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 2-11.	1.3	34
24	The Interleukin 1 (IL-1) Receptor Accessory Protein Toll/IL-1 Receptor Domain. Journal of Biological Chemistry, 2003, 278, 49145-49153.	1.6	31
25	Lung function and inflammation during murine Pseudomonas aeruginosa airway infection. Immunobiology, 2011, 216, 901-908.	0.8	31
26	Histamine induces chemotaxis and phagocytosis in murine bone marrow-derived macrophages and RAW 264.7 macrophage-like cells via histamine H4-receptor. Inflammation Research, 2014, 63, 239-247.	1.6	31
27	The histamine H ₄ â€receptor (H ₄ R) regulates eosinophilic inflammation in ovalbuminâ€induced experimental allergic asthma in mice. European Journal of Immunology, 2015, 45, 1129-1140.	1.6	31
28	Opposite Effects of Mepyramine on JNJ 7777120-Induced Amelioration of Experimentally Induced Asthma in Mice in Sensitization and Provocation. PLoS ONE, 2012, 7, e30285.	1.1	28
29	Systematic analysis of histamine and N-methylhistamine concentrations in organs from two common laboratory mouse strains: C57Bl/6 and Balb/c. Inflammation Research, 2011, 60, 1153-1159.	1.6	27
30	Proinflammatory role of the histamine H4 receptor in dextrane sodium sulfate-induced acute colitis. Biochemical Pharmacology, 2015, 98, 102-109.	2.0	24
31	Histamine H1- and H4-receptor signaling cooperatively regulate MAPK activation. Biochemical Pharmacology, 2015, 98, 432-439.	2.0	24
32	Delineating the Role of Histamine-1- and -4-Receptors in a Mouse Model of Th2-Dependent Antigen-Specific Skin Inflammation. PLoS ONE, 2014, 9, e87296.	1.1	24
33	The dual H3/4R antagonist thioperamide does not fully mimic the effects of the  standard' H4R antagonist JNJ 7777120 in experimental murine asthma. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 983-990.	1.4	23
34	Interleukin-12 Upregulates the IL-18RβChain in BALB/c Thymocytes. Journal of Interferon and Cytokine Research, 2001, 21, 635-642.	0.5	22
35	Threonine 66 in the death domain of IRAK-1 is critical for interaction with signaling molecules but is not a target site for autophosphorylation. Journal of Leukocyte Biology, 2008, 84, 807-813.	1.5	20
36	Use of monoclonal antibodies to assess expression of anaphylatoxin receptors in tubular epithelial cells of human, murine and rat kidneys. Immunobiology, 2007, 212, 129-139.	0.8	19

#	Article	IF	Citations
37	Experimental Bronchial Asthma $\hat{a}\in$ The Strength of the Species Rat. Current Drug Targets, 2008, 9, 466-469.	1.0	19
38	The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. International Journal of Molecular Sciences, 2021, 22, 6116.	1.8	18
39	Human neutrophils are activated by a peptide fragment of Clostridium difficiletoxin B presumably via formyl peptide receptor. Cellular Microbiology, 2015, 17, 893-909.	1.1	17
40	Endogenous IL-18 in experimentally induced asthma affects cytokine serum levels but is irrelevant for clinical symptoms. Cytokine, 2008, 42, 298-305.	1.4	16
41	Analysis of the histamine H2-receptor in human monocytes. Biochemical Pharmacology, 2014, 92, 369-379.	2.0	16
42	No Evidence for Histamine H ₄ Receptor in Human Monocytes. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 519-526.	1.3	15
43	The first two N-terminal immunoglobulin-like domains of soluble human IL-1 receptor type II are sufficient to bind and neutralize IL- $1\hat{l}^2$. FEBS Letters, 2000, 487, 189-193.	1.3	13
44	The therapeutic potential of histamine receptor ligands in inflammatory bowel disease. Biochemical Pharmacology, 2014, 91, 12-17.	2.0	13
45	Deletion of IL-18 Expression Ameliorates Spontaneous Kidney Failure in MRLlpr Mice. PLoS ONE, 2015, 10, e0140173.	1.1	13
46	Histamine H4-receptor expression in the brain?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 5-9.	1.4	12
47	High constitutive Akt2 activity in U937 promonocytes: effective reduction of Akt2 phosphorylation by the histamine H2-receptor and the \hat{l}^2 2-adrenergic receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 87-101.	1.4	12
48	Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix. Rapid Communications in Mass Spectrometry, 2010, 24, 561-570.	0.7	11
49	Distinct Signalling Pathways of Murine Histamine H1- and H4-Receptors Expressed at Comparable Levels in HEK293 Cells. PLoS ONE, 2014, 9, e107481.	1.1	11
50	Lack of Histamine H4-Receptor Expression Aggravates TNBS-Induced Acute Colitis Symptoms in Mice. Frontiers in Pharmacology, 2017, 8, 642.	1.6	11
51	Injection of IL-12- and IL-18-encoding plasmids ameliorates the autoimmune pathology of MRL/Mp-Tnfrsf6lpr mice: synergistic effect on autoimmune symptoms. International Immunology, 2006, 18, 1779-1787.	1.8	10
52	Use of monoclonal antibodies to assess expression of anaphylatoxin receptors in rat and murine models of lung inflammation. Experimental and Toxicologic Pathology, 2007, 58, 419-425.	2.1	10
53	Problems associated with the use of commercial and non-commercial antibodies against the histamine H4 receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 855-860.	1.4	10
54	Impact of boostering for the strength of asthma parameters and dendritic cell numbers in a C57BL/6 model of allergic airway inflammation. Experimental and Toxicologic Pathology, 2008, 60, 425-434.	2.1	7

#	Article	IF	CITATIONS
55	In vivo Evidence for Partial Activation of Eosinophils via the Histamine H4-Receptor: Adoptive Transfer Experiments Using Eosinophils From H4Râ^'/â'' and H4R+/+ Mice. Frontiers in Immunology, 2018, 9, 2119.	2.2	7
56	Genetic Deficiency of the Histamine H4-Receptor Reduces Experimental Colorectal Carcinogenesis in Mice. Cancers, 2020, 12, 912.	1.7	7
57	Withdrawal of 2-mercaptoethanol induces apoptosis in a B-cell line via fas upregulation. , 1998, 177, 68-75.		6
58	Histamine via the Histamine H $<$ sub $>2<$ /sub $>$ -Receptor Reduces Î \pm -CD3-Induced Interferon-Î 3 Synthesis in Murine CD4 $<$ sup $>+<$ /sup $>$ T Cells in an Indirect Manner. Journal of Interferon and Cytokine Research, 2012, 32, 185-190.	0.5	6
59	Role of the Histamine H4-Receptor in Bronchial Asthma. Handbook of Experimental Pharmacology, 2016, 241, 347-359.	0.9	6
60	Flow cytometric analysis with a fluorescently labeled formyl peptide receptor ligand as a new method to study the pharmacological profile of the histamine H2 receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1039-1052.	1.4	5
61	Mouse Colonic Epithelial Cells Functionally Express the Histamine H ₄ Receptor. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 167-174.	1.3	5
62	Histamine regulates murine primary dendritic cell functions. Immunopharmacology and Immunotoxicology, 2016, 38, 379-384.	1.1	3
63	Overexpression of the bcl-2 oncogene in the mouse pre-B cell line SPGM-1 protects from apoptosis, but does not affect blocked B-lineage differentiation and lineage switch towards macrophage like cells. Cell Death and Differentiation, 1997, 4, 580-589.	5.0	2
64	Probiotics in Naunyn–Schmiedeberg's Archives of Pharmacology. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1595-1597.	1.4	2
65	Development of biologicals for the therapy of lupus erythematosus. Expert Review of Vaccines, 2007, 6, 1001-1011.	2.0	1
66	10 Relevance of IL-18 in DSS-induced Colitis in Mice. Cytokine, 2007, 39, 3.	1.4	0