
Yingliang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/724978/publications.pdf Version: 2024-02-01

YINCHANG LIU

#	Article	IF	CITATIONS
1	Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy, 2016, 27, 320-329.	16.0	121
2	Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. International Journal of Hydrogen Energy, 2013, 38, 2670-2677.	7.1	107
3	Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS Applied Materials & Interfaces, 2019, 11, 35914-35923.	8.0	65
4	In situ fabrication of CDs/g-C3N4 hybrids with enhanced interface connection via calcination ofÂthe precursors for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2018, 43, 91-99.	7.1	55
5	Effective improvement of photocatalytic hydrogen evolution via a facile in-situ solvothermal N-doping strategy in N-TiO2/N-graphene nanocomposite. International Journal of Hydrogen Energy, 2014, 39, 6845-6852.	7.1	48
6	A review on solution-processed perovskite/organic hybrid photodetectors. Journal of Materials Chemistry C, 2021, 9, 5302-5322.	5.5	44
7	Identical steady tribological performance of graphene-oxide-strengthened polyurethane/epoxy interpenetrating polymer networks derived from graphene nanosheet. Polymer, 2015, 64, 62-68.	3.8	41
8	Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6064-6071.	8.0	33
9	Palladium complex of poly(4-vinylpyridine-co-acrylic acid) for homogeneous hydrogenation of aromatic nitro compounds. Journal of Molecular Catalysis A, 2003, 192, 1-7.	4.8	32
10	Synthesis and electroluminescent properties of a phenothiazineâ€based polymer for nondoped polymer lightâ€emitting diodes with a stable orangeâ€red emission. Journal of Polymer Science Part A, 2007, 45, 4867-4878.	2.3	31
11	Carbon-Coated Graphitic Carbon Nitride Nanotubes for Supercapacitor Applications. ACS Applied Nano Materials, 2020, 3, 7016-7028.	5.0	31
12	Recyclable low-temperature phase change microcapsules for cold storage. Journal of Colloid and Interface Science, 2020, 564, 286-295.	9.4	30
13	TiO2 nanocomposite with reduced graphene oxide through facile blending and its photocatalytic behavior for hydrogen evolution. Materials Research Bulletin, 2013, 48, 2824-2831.	5.2	29
14	Resistive switching performance of fibrous crosspoint memories based on an organic–inorganic halide perovskite. Journal of Materials Chemistry C, 2020, 8, 12865-12875.	5.5	29
15	Near-infrared absorbing dyes at 1064Ânm: Soluble dithiolene nickel complexes with alkylated electron-donating groups as Peripheral substituents. Dyes and Pigments, 2016, 128, 179-189.	3.7	27
16	One-step preparation of halogenated aminobenzonitrile modified g-C3N4 via copolymerization and in situ halogen doping for highly enhanced visible light hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 6341-6351.	7.1	26
17	TiO 2 / N -graphene nanocomposite via a facile in-situ hydrothermal sol–gel strategy for visible light photodegradation of eosin Y. Materials Research Bulletin, 2014, 60, 188-194.	5.2	22
18	A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: convenient synthesis and large nonlinear optical effects. Polymer Chemistry, 2016, 7, 4016-4024.	3.9	22

YINGLIANG LIU

#	Article	IF	CITATIONS
19	Facile synthesis of hierarchical carpet-like WO3 microflowers for high NO2 gas sensing performance. Materials Letters, 2018, 210, 8-11.	2.6	22
20	Construction of carbon dots modified hollow g-C3N4 spheres via in situ calcination of cyanamide and glucose for highly enhanced visible light photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 1568-1578.	7.1	22
21	Conjugated polymers containing phenothiazine moieties in the main chain. Polymers for Advanced Technologies, 2006, 17, 468-473.	3.2	21
22	Mechanistic study on metal-free acetylene hydrochlorination catalyzed by imidazolium-based ionic liquids. Molecular Catalysis, 2018, 461, 73-79.	2.0	20
23	Orange and red emitting OLEDs based on phenothiazine polymers. Journal Physics D: Applied Physics, 2006, 39, 2680-2683.	2.8	19
24	Evident improvement of nitrogen-doped graphene on visible light photocatalytic activity of N-TiO2/N-graphene nanocomposites. Materials Research Bulletin, 2015, 65, 27-35.	5.2	19
25	Photorefractive hyper-structured molecular glasses constructed by calix[4]resorcinarene core and carbazole-based methine nonlinear optical chromophore. Dyes and Pigments, 2017, 142, 8-16.	3.7	19
26	Dendritic PAMAM polymers for strong perovskite intergranular interaction enhancing power conversion efficiency and stability of perovskite solar cells. Electrochimica Acta, 2020, 349, 136387.	5.2	19
27	Organic light-emitting diode based on a carbazole compound. Synthetic Metals, 2006, 156, 824-827.	3.9	18
28	A second-order nonlinear optical dendronized hyperbranched polymer containing isolation chromophores: achieving good optical nonlinearity and stability simultaneously. Science China Chemistry, 2018, 61, 584-591.	8.2	18
29	Calix[4]resorcinarene-based branched macromolecules for all-optical photorefractive applications. Journal of Materials Chemistry C, 2016, 4, 10684-10690.	5.5	17
30	A calix[4]resorcinarene-based hyper-structured molecule bearing disperse red 1 as the chromophore with enhanced photorefractive performance under non-electric field. Dyes and Pigments, 2019, 160, 579-586.	3.7	17
31	Undoped yellow-emitting organic light-emitting diodes from a phenothiazine-based derivative. Synthetic Metals, 2007, 157, 427-431.	3.9	16
32	Synthesis and characterization of lowâ€bandâ€gap conjugated polymers containing phenothiazine and benzoâ€2,1,3â€thiaâ€fselenoâ€diazole. Polymers for Advanced Technologies, 2010, 21, 663-668.	3.2	16
33	Synchronous Dual Roles of Copper Sulfide on the Insulating PET Fabric for High-Performance Portable Flexible Supercapacitors. Energy & Fuels, 2021, 35, 6880-6891.	5.1	16
34	Flexible stretchable electrothermally/photothermally dual-driven heaters from nano-embedded hierarchical CuxS-Coated PET fabrics for all-weather wearable thermal management. Journal of Colloid and Interface Science, 2022, 624, 564-578.	9.4	16
35	Ring-opening metathesis polymerization of norbornene derivatives for multifunctionalized all-optical photorefractive polymers with a non-conjugated main chain. Polymer, 2012, 53, 138-144.	3.8	13
36	Enhanced electroluminescent performance by doping organic conjugated ionic compound into graphene oxide hole-injecting layer. Journal of Materials Science, 2019, 54, 12688-12697.	3.7	13

YINGLIANG LIU

#	Article	IF	CITATIONS
37	Tribological mechanism improving the wear resistance of polyurethane/epoxy interpenetrating polymer network via nanodiamond hybridization. Journal of Applied Polymer Science, 2014, 131, .	2.6	12
38	Swelling-reconstructed chitosan-viscose nonwoven fabric for high-performance quasi-solid-state supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 489-499.	9.4	12
39	Bay Position Substituted Perylene Diimide Derivatives as Cathode Interface Materials for High-Efficient Nonfullerene and Fullerene Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 6423-6431.	5.1	12
40	Preliminary photovoltaic response from a polymer containing p-vinylenephenylene amine backbone. Solar Energy Materials and Solar Cells, 2007, 91, 1289-1298.	6.2	11
41	Evident Enhancement of Efficiency and Stability in Perovskite Solar Cells with Triphenylamine-Based Macromolecules on the CuSCN Hole-Transporting Layer. Journal of Electronic Materials, 2021, 50, 3962-3971.	2.2	11
42	The optimization of π-bridge for trialkylsilyl substituted D-π-A photovoltaic polymers. Dyes and Pigments, 2021, 194, 109609.	3.7	11
43	Calix[4]resorcinarene-based hyper-structured molecular thermally activated delayed fluorescence yellow-green emitters for non-doped OLEDs. Journal of Materials Chemistry C, 2020, 8, 4469-4476.	5.5	10
44	Synthesis and characterization of photoelectronic polymers containing triphenylamine moiety. Reactive and Functional Polymers, 2007, 67, 253-263.	4.1	8
45	Transient photophysics of phenothiazine–thiophene/furan copolymers in solvents. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 44-47.	3.9	8
46	A bright single layer non-doped orange-red light emitting diode using a symmetric starburst material via solution process. New Journal of Chemistry, 2010, 34, 1994.	2.8	8
47	Advances in Organic Allâ€Optical Photorefractive Materials. Macromolecular Symposia, 2012, 317-318, 227-239.	0.7	8
48	Enhanced electroluminescent efficiency with ionic liquid doped into PEDOT:PSS hole-injecting layer. Polymer, 2015, 77, 42-47.	3.8	8
49	Flexible random resistive access memory devices with ferrocene–rGO nanocomposites for artificial synapses. Journal of Materials Chemistry C, 2021, 9, 5749-5757.	5.5	8
50	Triphenylamine-carbazole alternating copolymers bearing thermally activated delayed fluorescent emitting and host pendant groups for solution-processable OLEDs. Reactive and Functional Polymers, 2021, 163, 104898.	4.1	8
51	Synthesis and characterization of liquid crystalline copolyesters containing horizontal and lateral rods in main chain (II). Reactive and Functional Polymers, 2005, 64, 35-46.	4.1	7
52	Synthesis of conjugated polymers bearing pendant bipyridine ruthenium complexes. Reactive and Functional Polymers, 2015, 90, 7-14.	4.1	7
53	Synthesis and characterization of conjugated polymers containing a carbazole moiety. Polymers for Advanced Technologies, 2008, 19, 793-800.	3.2	6
54	Conjugated Polymers for Optoelectronic Applications. Macromolecular Symposia, 2008, 270, 161-170.	0.7	5

YINGLIANG LIU

#	Article	IF	CITATIONS
55	Organic solution-processible electroluminescent molecular glasses for non-doped standard red OLEDs with electrically stable chromaticity. Materials Research Bulletin, 2015, 70, 865-875.	5.2	5

Solvent-induced helical conformation observed from a conjugated polymer poly(N-octylcarbazole) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 $\frac{32}{2}$

57	Color tunability in nonâ€doped singleâ€layer PLEDs from a carbazoleâ€based electroluminescent polymer. Polymers for Advanced Technologies, 2008, 19, 1084-1091.	3.2	4
58	Synthesis of organic phenothiazine-based molecular glasses and effect of racemic/homochiral aliphatic chain on near-infrared photorefractive property. Journal of Physics and Chemistry of Solids, 2012, 73, 1136-1145.	4.0	4
59	Effect of salenâ€metal complexes on thermosensitive reversibility of stimuliâ€responsive waterâ€soluble poly(urethane amine)s. Journal of Applied Polymer Science, 2013, 129, 3696-3703.	2.6	4
60	An all-optical photorefractive miktoarm star polymer synthesized via a combination of RAFT polymerization and click reaction. Reactive and Functional Polymers, 2019, 143, 104321.	4.1	4
61	Static and time-resolved spectroscopy of carbazole-based oligomers with phenylene/thiophene/furan. Chemical Physics Letters, 2008, 459, 146-148.	2.6	3
62	Biomineralized organic–inorganic hybrids aiming for smart drug delivery. Pure and Applied Chemistry, 2014, 86, 671-683.	1.9	2
63	A carbazole–triphenylamine copolymerâ€bearing pendant europium complexes: Synthesis and luminescence properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
64	NH3+-Functionalized PAMAM Dendrimers Enhancing Power Conversion Efficiency and Stability of Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6414-6425.	2.2	2
65	A stable red emission in polymer light-emitting diodes based on phenothiazine derivative. , 2007, , .		1
66	Synthesis of an electroluminescent polymer and its nonâ€doped lightâ€emitting diodes with stable green emission. Polymers for Advanced Technologies, 2008, 19, 1839-1843.	3.2	1
67	Raman Imaging Evidence for Mechanical/Tribological Quasi-Steady State in GO-Strengthening Polyurethane/Epoxy Interpenetrating Polymer Network. Macromolecular Research, 0, , 1.	2.4	1
68	Synthesis of phenothiazineâ€based electroluminescent polymers with a stable emission property. Polymers for Advanced Technologies, 2008, 19, 1584-1589.	3.2	0
69	All-optical non-conjugated multi-functionalized photorefractive polymers via ring-opening metathesis polymerization. E-Polymers, 2020, 20, 353-360.	3.0	0
70	Graphitic nanosheets via two-dimensional polymerization enhancing organic all-optically controlled photorefractive performance. SN Applied Sciences, 2020, 2, 1.	2.9	0
71	TiO2-intercalated graphite nanosheets increasing power conversion efficiency of MAxFA(1-x)PbI3 perovskite solar cells. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	0