
Danny Verboekend

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Zeolites Overcome all Obstacles: Next Stop Industrial Implementation. Chimia, 2022, 67, 327.	0.6	29
2	Aromatics Production from Lignocellulosic Biomass: Shape Selective Dealkylation of Lignin-Derived Phenolics over Hierarchical ZSM-5. ACS Sustainable Chemistry and Engineering, 2020, 8, 8713-8722.	6.7	45
3	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	12.6	631
4	Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: Impact of acid properties and pore constraint. Applied Catalysis B: Environmental, 2018, 234, 117-129.	20.2	75
5	Synthetic and Catalytic Potential of Amorphous Mesoporous Aluminosilicates Prepared by Postsynthetic Aluminations of Silica in Aqueous Media. ChemCatChem, 2018, 10, 1385-1397.	3.7	7
6	Propylphenol to Phenol and Propylene over Acidic Zeolites: Role of Shape Selectivity and Presence of Steam. ACS Catalysis, 2018, 8, 7861-7878.	11.2	59
7	Enhanced Acidity and Accessibility in Al-MCM-41 through Aluminum Activation. Chemistry of Materials, 2016, 28, 7731-7743.	6.7	32
8	Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 2016, 45, 584-611.	38.1	619
9	Alkylphenols to phenol and olefins by zeolite catalysis: a pathway to valorize raw and fossilized lignocellulose. Green Chemistry, 2016, 18, 297-306.	9.0	105
10	Catalyst Design by NH ₄ OH Treatment of USY Zeolite. Advanced Functional Materials, 2015, 25, 7130-7144.	14.9	76
11	Hierarchical Zeolite: Catalyst Design by NH ₄ OH Treatment of USY Zeolite (Adv. Funct.) Tj ETQq1 1	0.784314 14.9	rgǥT /Overloo
12	Potential of Sustainable Hierarchical Zeolites in the Valorization of αâ€Pinene. ChemSusChem, 2015, 8, 1197-1205.	6.8	41
13	Hierarchical high-silica zeolites as superior base catalysts. Chemical Science, 2014, 5, 677-684.	7.4	77
14	Towards a Sustainable Manufacture of Hierarchical Zeolites. ChemSusChem, 2014, 7, 653-653.	6.8	1
15	Hierarchical Silicoaluminophosphates by Postsynthetic Modification: Influence of Topology, Composition, and Silicon Distribution. Chemistry of Materials, 2014, 26, 4552-4562.	6.7	91
16	Towards a Sustainable Manufacture of Hierarchical Zeolites. ChemSusChem, 2014, 7, 753-764.	6.8	81
17	Hierarchical Zeolites by Desilication: Occurrence and Catalytic Impact of Recrystallization and Restructuring. Crystal Growth and Design, 2013, 13, 5025-5035.	3.0	74
18	Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catalysis Science and Technology, 2013, 3, 972.	4.1	64

DANNY VERBOEKEND

#	Article	IF	CITATIONS
19	Hierarchical FAU―and LTAâ€Type Zeolites by Postâ€6ynthetic Design: A New Generation of Highly Efficient Base Catalysts. Advanced Functional Materials, 2013, 23, 1923-1934.	14.9	125
20	Decoupling porosity and compositional effects on desilicated ZSM-5 zeolites for optimal alkylation performance. Catalysis Science and Technology, 2012, 2, 759.	4.1	64
21	Mesopore Formation in USY and Beta Zeolites by Base Leaching: Selection Criteria and Optimization of Pore-Directing Agents. Crystal Growth and Design, 2012, 12, 3123-3132.	3.0	144
22	Hierarchical Y and USY Zeolites Designed by Postâ€ S ynthetic Strategies. Advanced Functional Materials, 2012, 22, 916-928.	14.9	283
23	Towards more efficient monodimensional zeolite catalysts: n-alkane hydro-isomerisation on hierarchical ZSM-22. Catalysis Science and Technology, 2011, 1, 1331.	4.1	72
24	Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution. CrystEngComm, 2011, 13, 3408.	2.6	140
25	Full Compositional Flexibility in the Preparation of Mesoporous MFI Zeolites by Desilication. Journal of Physical Chemistry C, 2011, 115, 14193-14203.	3.1	230
26	Design of hierarchical zeolite catalysts by desilication. Catalysis Science and Technology, 2011, 1, 879.	4.1	576
27	Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization. ChemCatChem, 2011, 3, 1731-1734.	3.7	84
28	Desilication Mechanism Revisited: Highly Mesoporous Allâ€Silica Zeolites Enabled Through Poreâ€Directing Agents. Chemistry - A European Journal, 2011, 17, 1137-1147.	3.3	235
29	Inside Cover: Desilication Mechanism Revisited: Highly Mesoporous All-Silica Zeolites Enabled Through Pore-Directing Agents (Chem. Eur. J. 4/2011). Chemistry - A European Journal, 2011, 17, 1062-1062.	3.3	0
30	Interplay of Properties and Functions upon Introduction of Mesoporosity in ITQâ€4 Zeolite. Advanced Functional Materials, 2010, 20, 1441-1450.	14.9	69
31	Properties and Functions of Hierarchical Ferrierite Zeolites Obtained by Sequential Post-Synthesis Treatments. Chemistry of Materials, 2010, 22, 4679-4689.	6.7	84