Silvano Martello

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/724968/publications.pdf
Version: 2024-02-01

Knapsack problems â€" An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Computers and Operations Research, 2022, 143, 105693.

12 Combinatorial Optimization: Between Practice and Theory. Discrete Applied Mathematics, 2019, 264, 1-3.
0.5

3
13 Comments on: A comparative study of time aggregation techniques in relation to power capacity-expansion modeling. Top, 2019, 27, 414-415.

Mathematical models and decomposition methods for the multiple knapsack problem. European Journal of Operational Research, 2019, 274, 886-899.
3.5

37

Relaxations and heuristics for the multiple non-linear separable knapsack problem. Computers and
2.4

10
Operations Research, 2018, 93, 79-89.
1.1

0
Exact and heuristic algorithms for the interval min-max regret generalized assignment problem.
Computers and Industrial Engineering, 2018, 125, 98-110.

22 Training software for orthogonal packing problems. Computers and Industrial Engineering, 2017, 111,

```
Logic based Benders' decomposition for orthogonal stock cutting problems. Computers and
2.4 43
23 Logic based Benders' decomposition for or
2.4
```

24 Twelve surveys in operations research. Annals of Operations Research, 2016, 240, 3-11.

25 Bin packing and cutting stock problems: Mathematical models and exact algorithms. European Journal of Operational Research, 2016, 255, 1-20.
3.5

26 A brand new cheating attempt: a case of usurped identity. 4or, 2016, 14, 333-336.
1.0

9
27 Heuristics for the General Multiple Non-linear Knapsack Problem. Electronic Notes in Discrete Mathematics, 2016, 55, 69-72.
29 Heuristic and Exact Algorithms for the Interval Minâ€"Max Regret Knapsack Problem. INFORMS Journal on Computing, 2015, 27, 392-405.
$1.0 \quad 34$

30 The dirty dozen of 4OR. 4or, 2015, 13, 1-13.
1.0

6
31 Decision Making under Uncertainty in Electricity Markets. Journal of the Operational Research Society, 2015, 66, 174-174.

32 Advances in Combinatorial Optimization. Discrete Applied Mathematics, 2015, 196, 1-3.
$2.1 \quad 5$
Optimal Scheduling of a Multiunit Hydro Power Station in a Short-Term Planning Horizon. Profiles in 0.3
Operations Research, 2015, , 167-181.Efficient Two-Dimensional Data Allocation in IEEE 802.16 OFDMA. IEEE/ACM Transactions on
3.5

```
37 An overview of computational issues in combinatorial optimization. Annals of Operations Research,
2013, 207, 1-5.
```

38 Optimal design of fair layouts. Flexible Services and Manufacturing Journal, 2013, 25, 443-461.
1.93

39 Eleven surveys in operations research: III. Annals of Operations Research, 2013, 204, 3-9. 6

40 An overview of advances in combinatorial optimization related topics. Optimization, 2013, 62, 1291-1295. $1.0 \quad 3$
A note on exact and heuristic algorithms for the identical parallel machine scheduling problem.
Journal of Heuristics, 2012, 18, $939-942$.

42 No end of the world in 2012 for 4OR. 4or, 2012, 10, 1-13. 1.06
43 A look at the past and present of optimization ấ" An editorial. European Journal of Operational
Research, 2012, 219, 638-640.
3.5
0

44 Complexity and approximation of an area packing problem. Optimization Letters, 2012, 6, 1-9.
0.9

12
45 Efficient Two-Dimensional Packing Algorithms for Mobile WiMAX. Management Science, 2011, 57,
2130-2144.

46 Combinatorial optimization issues in scheduling. Journal of Scheduling, 2011, 14, 221-223.
1.3

10
Developments in combinatorial optimization (ECCO-XX): Guest editorial. Computational Optimization
and Applications, 2011, 48, 341-343.

Heuristic algorithms for the general nonlinear separable knapsack problem. Computers and Operations Research, 2011, 38, 505-513.
2.4

15
Jen $\AA^{‘}$ Egerv $\tilde{A}_{j} r y$: from the origins of the Hungarian algorithm to satellite communication. Central
49 European Journal of Operations Research, 2010, 18, 47-58.
1.1

20

Models and algorithms for fair layout optimization problems. Annals of Operations Research, 2010,
179, 5-14.
2.6

2

51 Eleven surveys in operations research: II. Annals of Operations Research, 2010, 175, 3-8.
$2.6 \quad 7$

55	An aggregate label setting policy for the multi-objective shortest path problem. European Journal of Operational Research, 2010, 207, 1489-1496.	3.5	21
56	Plagiarism again: Sreenivas and Srinivas, with an update on Marcu. 4or, 2009, 7, 17-20.	1.0	10
57	Assignment Problems. , 2009, ,		579
58	An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reservoir. IEEE Transactions on Power Systems, 2008, 23, 1115-1124.	4.6	271
59	Heuristic and Exact Algorithms for the Identical Parallel Machine Scheduling Problem. INFORMS Journal on Computing, 2008, 20, 333-344.	1.0	52
60	Scatter Search Algorithms for Identical Parallel Machine Scheduling Problems. Studies in Computational Intelligence, 2008, , 41-59.	0.7	4
61	Algorithm 864. ACM Transactions on Mathematical Software, 2007, 33, 7.	1.6	74
62	A Tabu Search Algorithm for a Routing and Container Loading Problem. Transportation Science, 2006, 40, 342-350.	2.6	243
63	Lower bounds and heuristic algorithms for the ki-partitioning problem. European Journal of Operational Research, 2006, 171, 725-742.	3.5	13

64 A case of plagiarism: DÄfnuÅ£ Marcu. 4or, 2006, 4, 11-13.
65 Packing into the smallest square: Worst-case analysis of lower bounds. Discrete Optimization, 2006, 3,
317-326.
$0.6 \quad 5$
A note on exact algorithms for the identical parallel machine scheduling problem. European Journal 66 A note on exact algorithms for the identical pa
of Operational Research, 2005, 160, 576-578. 3.5 23$1.2 \quad 34$
Erratum to â€œThe Three-Dimensional Bin Packing Problemâ€! Robot-Packable and Orthogonal Variants of Packing Problems. Operations Research, 2005, 53, 735-736.2.662
TSpack: A Unified Tabu Search Code for Multi-Dimensional Bin Packing Problems. Annals of Operations Research, 2004, 131, 203-213. 68Heuristic Algorithms and Scatter Search for the Cardinality Constrained Pâ", CmaxProblem. Journal of1.1Heuristics, 2004, 10, 169-204.1.1Models and Bounds for Two-Dimensional Level Packing Problems. Journal of CombinatorialOptimization, 2004, 8, 363-379.

73	An Exact Algorithm for the Two-Constraint Oâ€ "1 Knapsack Problem. Operations Research, 2003, 51, 826-835.	1.2
74	Metaheuristic Algorithms for the Strip Packing Problem. Applied Optimization, 2003, , 159-179.	0.4
75	A lower bound for the non-oriented two-dimensional bin packing problem. Discrete Applied Mathematics, 2002, 118, 13-24.	0.5

76 Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics, 2002, 123,

78 Two-dimensional packing problems: A survey. European Journal of Operational Research, 2002, 141, 241-252.
Heuristic algorithms for the three-dimensional bin packing problem. European Journal of Operational
Research, 2002, 141, 410-420.

80 A Polyhedral Approach to Simplified Crew Scheduling and Vehicle Scheduling Problems. Management

Science, 2001, 47, 833-850.
2.4

56
81 Efficient algorithms and codes for k-cardinality assignment problems. Discrete Applied Mathematics, 0.5 18
82 Bounds for the cardinality constrainedP?Cmax problem. Journal of Scheduling, 2001, 4, 123-138. 1.3 28
83 New trends in exact algorithms for the Oâ $€^{\text {" }} 1$ knapsack problem. European Journal of Operational
Research, 2000, 123, $225-332$. Research, 2000, 123, 325-332. 240
84 The Three-Dimensional Bin Packing Problem. Operations Research, 2000, 48, 256-267.1.2479
85 Bin Packing Approximation Algorithms: Combinatorial Analysis., 1999, , 151-207. 40Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem. Management Science, 1999, 45,414-424.Approximation algorithms for the oriented two-dimensional bin packing problem. European Journal of3.581

```
91 Exact Solution of the Two-Dimensional Finite Bin Packing Problem. Management Science, 1998, 44,
388-399.
```

92 Upper Bounds and Algorithms for Hard 0-1 Knapsack Problems. Operations Research, 1997, 45, 768-778.
1.2

71
93 Exact and approximation algorithms for makespan minimization on unrelated parallel machines. 0.5 68
Discrete Applied Mathematics, 1997, 75, 169-188.

8

94 The k-cardinality assignment problem. Discrete Applied Mathematics, 1997, 76, 103-121.
0.5

12

96 An exact algorithm for the dual bin packing problem. Operations Research Letters, 1995, 17, 9-18.The bottleneck generalized assignment problem. European Journal of Operational Research, 1995, 83,
621-638.3.533A note on exact algorithms for the bottleneck generalized assignment problem. European Journal ofOperational Research, 1995, 83, 711-712.
99 Minimizing the sum of weighted completion times with unrestricted weights. Discrete Applied Mathematics, 1995, 63, 25-41.
Optimal Scheduling of Tasks on Identical Parallel Processors. ORSA Journal on Computing, 1995, 7, 191-200.
100 191-200
1.7 105
101 Special Issue of INFOR on Knapsack, Packing And Cutting. Infor, 1994, 32, 121-123. 0.5 4
102 The Delivery Man Problem and Cumulative Matroids. Operations Research, 1993, 41, 1055-1064. 1.2 141
103 Approximation Algorithms for Fixed Job Schedule Problems. Operations Research, 1992, 40, S96-S108. 1.2 41A note on 0.5-bounded greedy algorithms for the Oâ§s 1 knapsack problem. Information Processing Letters,
An exact algorithm for large unbounded knapsack problems. Operations Research Letters, 1990, 9, 0.5 36
105 15-20.
107 The selective travelling salesman problem. Discrete Applied Mathematics, 1990, 26, 193-207.0.5326

| 109 | Algorithms and codes for the assignment problem. Annals of Operations Research, 1988, 13, 191-223. | 2.6 |
| :--- | :--- | :--- | | A hybrid algorithm for finding thekth smallest ofn elements in O(n) time. Annals of Operations |
| :--- |
| Research, 1988, 13, 399-419. |

111 A New Algorithm for the 0-1 Knapsack Problem. Management Science, 1988, 34, 633-644. 2.422

112 The Fixed Job Schedule Problem with Spread-Time Constraints. Operations Research, 1987, 35, 849-858.
1.2

81

113 Linear Assignment Problems. North-Holland Mathematics Studies, 1987, 132, 259-282.
$0.2 \quad 38$

114 Algorithms for Knapsack Problems. North-Holland Mathematics Studies, 1987, 132, 213-257.
0.2

124
115 Worst-case analysis of the differencing method for the partition problem. Mathematical
Programming, 1987, 37, 117-120.
1.69

116 Most and least uniform spanning trees. Discrete Applied Mathematics, 1986, 15, 181-197.
0.5

35
117 A heuristic approach to the bus driver scheduling problem. European Journal of Operational
Research, 1986, 24, 106-117.
$3.5 \quad 35$

118 Approximation schemes for the subset-sum problem: Survey and experimental analysis. European
Journal of Operational Research, 1985, 22, 56-69.
$3.5 \quad 15$
119 Algorithm 632: A program for the Oâ€ $\in^{\text {" }} 1$ multiple knapsack problem. ACM Transactions on Mathematical
Software, 1985, 11, 135-140.
$1.6 \quad 20$

120 An Algorithm for the Bottleneck Traveling Salesman Problem. Operations Research, 1984, 32, 380-389.
1.2

14

121 Worst-case analysis of greedy algorithms for the subset-sum problem. Mathematical Programming, 1984, 28, 198-205.
1.6

33

A Mixture of Dynamic Programming and Branch-and-Bound for the Subset-Sum Problem. Management
2.4

53
122 Science, 1984, 30, 765-771.
$2.4-53$

123 Finding a minimum equivalent graph of a digraph. Networks, 1982, 12, 89-100.
1.6

15

A Bound and Bound algorithm for the zero-one multiple knapsack problem. Discrete Applied
Mathematics, 1981, 3, 275-288.
0.5

68

Technical Noteâ€"A Note on the Ingargiola-Korsh Algorithm for One-Dimensional Knapsack Problems.
Operations Research, 1980, 28, 1226-1227.
1.2

Solution of the zero-one multiple knapsack problem. European Journal of Operational Research, 1980,

