
Masatoshi Hasegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution-Processable Colorless Polyimides Derived from Hydrogenated Pyromellitic Dianhydride: Strategies to Reduce the Coefficients of Thermal Expansion by Maximizing the Spontaneous Chain Orientation Behavior during Solution Casting. Polymers, 2022, 14, 1131.	2.0	15
2	Poly(ester imide)s with low coefficients of thermal expansion (<scp>CTEs</scp>) and low water absorption (<scp>VI</scp>): an attempt to reduce the modulus while maintaining low <scp>CTEs</scp> and other desired properties. Polymer International, 2022, 71, 1164-1175.	1.6	3
3	Liquidâ€crystalline behavior and thermal conductivity of vinyl polymers containing benzoxazole side groups. Polymer International, 2021, 70, 812-822.	1.6	4
4	Poly(ester imide)s possessing low coefficients of thermal expansion and low water absorption (IV): Effects of esterâ€linked tetracarboxylic dianhydrides with longitudinally extended structures. Polymers for Advanced Technologies, 2020, 31, 389-406.	1.6	14
5	Poly(ester imide)s Possessing Low Coefficients of Thermal Expansion and Low Water Absorption (V). Effects of Ester-linked Diamines with Different Lengths and Substituents. Polymers, 2020, 12, 859.	2.0	18
6	Crosslinkable polyimides obtained from a reactive diamine and the effect of crosslinking on the thermal properties. Reactive and Functional Polymers, 2019, 139, 181-188.	2.0	12
7	Symmetric and asymmetric spiro-type colorless poly(ester imide)s with low coefficients of thermal expansion, high glass transition temperatures, and excellent solution-processability. Polymer, 2019, 169, 167-184.	1.8	26
8	Thermosets containing benzoxazole units: Liquidâ€crystalline behavior and thermal conductivity. Polymers for Advanced Technologies, 2019, 30, 128-142.	1.6	9
9	Optically transparent aromatic poly(ester imide)s with low coefficients of thermal expansion. 2: Effect of the introduction of alkylâ€substituted <i>p</i> â€biphenylene units. Polymer International, 2018, 67, 431-444.	1.6	23
10	Approaches to improve the film ductility of colorless cycloaliphatic polyimides. Polymers for Advanced Technologies, 2018, 29, 921-933.	1.6	24
11	Polyimides Containing Benzoxazole Units and Their Liquid-Crystalline Behavior. Macromolecular Research, 2018, 26, 900-912.	1.0	5
12	Superheat-resistant polymers with low coefficients of thermal expansion. Polymer, 2017, 111, 91-102.	1.8	85
13	C–Hâ‹⁻Cl ^{â^'} hydrogen bonds in solution and in the solid-state: HgCl ₂ complexes with cyclen-based cryptands. Dalton Transactions, 2017, 46, 3800-3804.	1.6	13
14	Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion. Polymers, 2017, 9, 520.	2.0	119
15	High-temperature polymers overcoming the trade-off between excellent thermoplasticity and low thermal expansion properties. Polymer, 2016, 99, 292-306.	1.8	36
16	Solution-processable CF 3 -substituted ductile polyimides with low coefficients of thermal expansion as novel coating-type protective layers in flexible printed circuit boards. Progress in Organic Coatings, 2016, 99, 125-133.	1.9	13
17	Ultraâ€low modulus polyazomethines and enhanced adhesion strength with copper foils. Polymers for Advanced Technologies, 2016, 27, 477-485.	1.6	3
18	Solutionâ€processable colorless polyimides with ultralow coefficients of thermal expansion for optoelectronic applications. Polymer International, 2016, 65, 1063-1073.	1.6	72

#	Article	IF	CITATIONS
19	Ultra-low-modulus Photosensitive Polybenzoxazole Systems. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 206-213.	0.1	0
20	Optically transparent aromatic poly(ester imide)s with low coefficients of thermal expansion (1). Self-orientation behavior during solution casting process and substituent effect. Polymer, 2015, 74, 1-15.	1.8	51
21	(1 <i>S</i> *,2 <i>S</i> *,4 <i>R</i> *,5 <i>R</i> *)-Cyclohexane-1,2,4,5-tetracarboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o75-o75.	0.2	2
22	Colorless polyimides derived from 1S,2S,4R,5R-cyclohexanetetracarboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications. Polymer, 2014, 55, 4693-4708.	1.8	92
23	Colorless polyimides with low coefficient of thermal expansion derived from alkyl-substituted cyclobutanetetracarboxylic dianhydrides. Polymer International, 2014, 63, 486-500.	1.6	64
24	Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting. European Polymer Journal, 2013, 49, 3657-3672.	2.6	80
25	Solutionâ€processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. Journal of Polymer Science Part A, 2013, 51, 575-592.	2.5	112
26	Low-CTE and Low-water Absorption Polyimides for FPC Applications. Journal of Japan Institute of Electronics Packaging, 2013, 16, 399-404.	0.0	0
27	γâ€Butyrolactoneâ€processable highâ€modulus poly(ester imide)s. Polymer International, 2012, 61, 466-476.	1.6	7
28	Colorless poly(ester imide)s derived from hydrogenated trimellitic anhydride. European Polymer Journal, 2012, 48, 483-498.	2.6	67
29	Strategy for Improvement of Non-flammability in Functional Polyimides. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 287-291.	0.1	8
30	Enhanced thermal conductivity of semiâ€aliphatic liquid crystalline polybenzoxazoles using magnetic orientation. Polymer International, 2011, 60, 1240-1247.	1.6	21
31	Fluorene ontaining Poly(ester imide)s and their Application to Positiveâ€Type Photosensitive Heatâ€Resistant Materials. Macromolecular Materials and Engineering, 2011, 296, 1002-1017.	1.7	21
32	Thermal- and solution-processable polyimides based on mellophanic dianhydride and their applications as heat-resistant adhesives for copper-clad laminates. Reactive and Functional Polymers, 2011, 71, 109-120.	2.0	35
33	Ultra-low-modulus Polyimides and Their Applications. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 495-499.	0.1	9
34	Spontaneous molecular orientation of polyimides induced by thermal imidization (5). Effect of ordered structure formation in polyimide precursors on CTE. European Polymer Journal, 2010, 46, 283-297.	2.6	68
35	Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. European Polymer Journal, 2010, 46, 681-693.	2.6	87
36	Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents. European Polymer Journal, 2010, 46, 1510-1524.	2.6	83

MASATOSHI HASEGAWA

#	Article	lF	CITATIONS
37	Spontaneous molecular orientation of polyimides induced by thermal imidization (4): Casting- and melt-induced in-plane orientation. European Polymer Journal, 2010, 46, 69-80.	2.6	50
38	Film Properties of Polyazomethines (1). Effect of Incorporation of Intramolecular Cyclodehydrating Units. High Performance Polymers, 2010, 22, 259-273.	0.8	4
39	Highly Tough and Highly Transparent Soluble Polybenzoxazoles (II): Effect of Sulfone Group. High Performance Polymers, 2009, 21, 219-244.	0.8	22
40	Using a polyelectrolyte to fabricate porous polyimide nanoparticles with craterâ€like pores. Polymers for Advanced Technologies, 2009, 20, 43-47.	1.6	29
41	Ultra-Low CTE and Improved Toughness of PMDA/PDA Polyimide-based Molecular Composites Containing Asymmetric BPDA-type Polyimides. High Performance Polymers, 2009, 21, 709-728.	0.8	42
42	Polyimides Containing Trans-1,4-cyclohexane unit (III). Ordered Structure and Intermolecular Interaction in s-BPDA/CHDA Polyimide. High Performance Polymers, 2009, 21, 282-303.	0.8	26
43	Ultralow-Dielectric-Constant Films Prepared from Hollow Polyimide Nanoparticles Possessing Controllable Core Sizes. Chemistry of Materials, 2009, 21, 419-424.	3.2	93
44	Anomalous Polyimide Nanoparticles Prepared from Blending of Unlike Polymers. Molecular Crystals and Liquid Crystals, 2009, 504, 9-17.	0.4	3
45	Colorless Polyimides Derived from Cycloaliphatic Tetracarboxylic Dianhydrides with Controlled Steric Structures (4). Applications to Positive-type Photosensitive Polyimide Systems with Controlled Extents of Imidization Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shil. 2009. 22. 411-415.	0.1	10
46	Characterization and properties of iron-incorporated gismondine prepared at 80°C. Journal of Porous Materials, 2008, 15, 35-42.	1.3	6
47	Rhodium-incorporated faujasite prepared at 80°C. Journal of Porous Materials, 2008, 15, 685-694.	1.3	1
48	Poly(ester imide)s Possessing Low CTE and Low Water Absorption (II). Effect of Substituents. Polymer Journal, 2008, 40, 56-67.	1.3	68
49	High-Modulus Positive-type Photosensitive Poly(amide-benzoxazole)s. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 151-154.	0.1	3
50	Highly Tough and Highly Transparent Soluble Polybenzoxazoles. High Performance Polymers, 2007, 19, 243-269.	0.8	24
51	Polyimides Containing Trans-1,4-cyclohexane Unit (II). Low-K and Low-CTE Semi- and Wholly Cycloaliphatic Polyimides. High Performance Polymers, 2007, 19, 175-193.	0.8	85
52	Low-CTE Polyimides Derived from 2,3,6,7-Naphthalenetetracarboxylic Dianhydride. Polymer Journal, 2007, 39, 610-621.	1.3	56
53	Effect of anion species from Ca-sources on framework type of Na–Ca zeolites prepared at 80°C. Journal of Porous Materials, 2007, 14, 401-407.	1.3	2
54	Effect of reaction temperature on Fe–Al analcime formation. Journal of Porous Materials, 2007, 14, 443-448.	1.3	7

MASATOSHI HASEGAWA

#	Article	IF	CITATIONS
55	Poly(ester imide)s Possessing Low Coef-cient of Thermal Expansion and Low Water Absorption. High Performance Polymers, 2006, 18, 697-717.	0.8	83
56	Corrosion and Adhesion Properties of a Low-CTE Polybenzoxazole Film. Journal of Japan Institute of Electronics Packaging, 2006, 9, 48-51.	0.0	1
57	Isomeric Biphenyl Polyimides. (I) Chemical Structure-property Relationships. High Performance Polymers, 2005, 17, 317-333.	0.8	62
58	Isomeric Biphenyl Polyimides. (II) Glass Transitions and Secondary Relaxation Processes. High Performance Polymers, 2005, 17, 335-347.	0.8	48
59	Influence of the Concentration of the Chlorine Ion in the Polybenzoxazole Precursors on the Corrosion of Metals. Journal of Japan Institute of Electronics Packaging, 2005, 8, 561-566.	0.0	0
60	Solution-processable Low-CTE Polybenzoxazoles. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 253-258.	0.1	26
61	cis,cis,cis-1,2,4,5-Cyclohexanetetracarboxylic acid and its dianhydride. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o435-o438.	0.4	18
62	Polyimides Containing Trans-1,4-cyclohexane Unit. Polymerizability of their Precursors and Low-CTE, Low-K and High-Tg Properties. High Performance Polymers, 2003, 15, 47-64.	0.8	94
63	Semi-Aromatic Polyimides with Low Dielectric Constant and Low CTE. High Performance Polymers, 2001, 13, S93-S106.	0.8	70
64	Buffer-like Action in Water Pool of Aerosol OT Reverse Micelles. Langmuir, 2001, 17, 1426-1431.	1.6	58
65	Molecular Design of Heat Resistant Polyimides Having Excellent Processability and High Glass Transition Temperature. High Performance Polymers, 2001, 13, S61-S72.	0.8	135
66	Role of the in-plane orientation of polyimide films in graphitization. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 3011-3019.	2.4	28
67	Thermo-Processable Polyimides with HighTg and High Thermo-Oxidative Stability as Derived from 2,3,3′,4′-biphenyltetracarboxylic dianhydride. High Performance Polymers, 2001, 13, 355-364.	0.8	43
68	Thermo-Processable Polyimides with High Thermo-Oxidative Stability as Derived from Oxydiphthalic Anhydride and Bisphenol a Type Dianhydride. High Performance Polymers, 2000, 12, 377-393.	0.8	51
69	Improvement of thermoplasticity for s-BPDA/PDA by copolymerization and blend with novel asymmetric BPDA-based polyimides. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2499-2511.	2.4	59
70	Polyimide/Polyimide Blend Miscibility Probed by Perylenetetracarboxydiimide Fluorescence. Macromolecules, 1999, 32, 6111-6119.	2.2	23
71	Structure and Properties of Novel Asymmetric Biphenyl Type Polyimides. Homo- and Copolymers and Blends. Macromolecules, 1999, 32, 387-396.	2.2	172
72	Unique fluorescence behavior of perylenetetracarboxydiimides in polyimide systems. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 827-840.	2.4	15

Masatoshi Hasegawa

#	Article	IF	CITATIONS
73	Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization. 3. Component Chain Orientation in Binary Polyimide Blends. Macromolecules, 1997, 30, 5745-5752.	2.2	65
74	Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization. 2. In-Plane Orientation. Macromolecules, 1996, 29, 7897-7909.	2.2	150
75	Structure, Properties, and Intermolecular Charge Transfer of Polyimides. ACS Symposium Series, 1995, , 395-412.	0.5	8
76	Photophysics, Photochemistry, and Intramolecular Charge Transfer of Polyimides. ACS Symposium Series, 1995, , 379-394.	0.5	1
77	Spontaneous molecular orientation of polyimides induced by thermal imidization. I. Uniaxial stretching of polyamic acid film. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1299-1303.	2.4	33
78	Photophysical processes in aromatic polyimides. Studies with model compounds. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 1617-1625.	2.4	69
79	Molecular aggregation and fluorescence spectra of aromatic polyimides. European Polymer Journal, 1989, 25, 349-354.	2.6	141