João P Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249614/publications.pdf

Version: 2024-02-01

1307594 940533 43 338 7 16 citations g-index h-index papers 46 46 46 283 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Review on the Rehabilitation Exoskeletons for the Lower Limbs of the Elderly and the Disabled. Electronics (Switzerland), 2022, 11, 388.	3.1	28
2	Measurement, Evaluation, and Control of Active Intelligent Gait Training Systemsâ€"Analysis of the Current State of the Art. Electronics (Switzerland), 2022, 11, 1633.	3.1	4
3	The NAO Robot in Slippery Scenarios: A Strategy. Journal of Information Systems Engineering and Management, 2021, 6, em0133.	0.7	1
4	The Cervical Spine Evaluation and Rehabilitation System. , 2021, , .		0
5	Development of Bath Auxiliary Robot for the Disabled Elderly. , 2021, , .		O
6	Real-time LSTM-RNN Classification of Floors with Different Friction Coefficients for a Walking Humanoid Robot Wearing a 3D Force System. IEEE Sensors Journal, 2021, , 1-1.	4.7	1
7	Human-Like Gait Adaptation to Slippery Surfaces for the NAO Robot Wearing Instrumented Shoes. International Journal of Humanoid Robotics, 2020, 17, 2050007.	1.1	5
8	Learning-Based Analysis of a New Wearable 3D Force System Data to Classify the Underlying Surface of a Walking Robot. International Journal of Humanoid Robotics, 2020, 17, 2050011.	1.1	4
9	Generating Individual Gait Kinetic Patterns Using Machine Learning. Communications in Computer and Information Science, 2020, , 53-64.	0.5	1
10	Computational Intelligence Generation of Subject-Specific Knee and Hip Healthy Joint Angles Reference Curves. IFMBE Proceedings, 2020, , 1653-1668.	0.3	2
11	Using Subject-Specific Reference Cyclograms on the Gait Evaluation of a Cerebral Palsy Patient. Communications in Computer and Information Science, 2020, , 466-479.	0.5	O
12	A Passive Lifting Assist Exoskeleton with Multiple Working Modes: Theoretical Evaluation and Design Concepts. , 2020, , .		3
13	Knee Injured Recovery Analysis Using Extreme Learning Machine. Communications in Computer and Information Science, 2020, , 65-79.	0.5	O
14	Real-Time Intended Knee Joint Motion Prediction by Deep-Recurrent Neural Networks. IEEE Sensors Journal, 2019, 19, 11503-11509.	4.7	60
15	Improved Humanoid Gait Using Learning-Based Analysis of a New Wearable 3D Force System: Work Programme. , 2019, , .		0
16	Plan for Automatic Adaptation of NAO Robots to Slippery Floors. , 2019, , .		1
17	Instrumented Shoes for 3D GRF Analysis and Characterization of Human Gait. Lecture Notes in Computer Science, 2019, , 51-62.	1.3	1
18	Monitoring System for Emergency Service in a Hospital Environment. , 2019, , .		2

#	Article	IF	Citations
19	Education with Robots Inspired in Biological Systems. Advances in Intelligent Systems and Computing, 2019, , 207-213.	0.6	5
20	Human knee joint walking pattern generation using computational intelligence techniques. Neural Computing and Applications, 2018, 30, 1701-1713.	5.6	13
21	Two New Indices to Assess Gait Disturbances Applied to Anterior Cruciate Ligament Reconstructed Knees. , 2018, , .		3
22	Human Periodic Rebalancing Modelling of a Rider-Bicycle System. , 2018, , .		0
23	Dynamic Human Gait VGRF Reference Profile Generation via Extreme Learning Machine. , 2018, , .		3
24	A Real-time Pre-impact Fall Detection and Protection System. , 2018, , .		13
25	Parameter analysis and selection for human gait characterization using a low cost vision system. , 2017, , .		1
26	A gait retraining feedback system based on wearable sensors. , 2017, , .		0
27	Treadmill and Vision System for Human Gait Acquisition and Analysis. Advances in Science, Technology and Engineering Systems, 2017, 2, 796-804.	0.5	0
28	Low cost vision system for human gait acquisition and characterization. , 2016, , .		4
29	Human gait analysis using instrumented shoes. , 2015, , .		4
30	Software for human gait analysis and classification. , 2015, , .		2
31	Active pedal exerciser for leg rehabilitation. , 2015, , .		2
32	Tuning a PD Controller Based on an SVR for the Control of a Biped Robot Subject to External Forces and Slope Variation. International Journal of Advanced Robotic Systems, 2014, 11, 32.	2.1	2
33	Adaptive PD Controller Modeled via Support Vector Regression for a Biped Robot. IEEE Transactions on Control Systems Technology, 2013, 21, 941-949.	5.2	15
34	SVR CONTROLLER FOR A BIPED ROBOT IN THE SAGITTAL PLANE WITH HUMAN-BASED ZMP TRAJECTORY REFERENCE AND GAIT. International Journal of Humanoid Robotics, 2012, 09, 1250018.	1.1	6
35	Sagittal stability PD controllers for a biped robot using a neurofuzzy network and an SVR. Robotica, 2011, 29, 717-731.	1.9	6
36	SVR sagittal balance of a biped robot controlling the torso and ankle joint angles. , 2010, , .		3

#	Article	IF	CITATION
37	ZMP trajectory reference for the sagittal plane control of a biped robot based on a human CoP and gait. , 2009, , .		8
38	Human Gait Acquisition and Characterization. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 2979-2988.	4.7	51
39	Control of a Biped Robot With Support Vector Regression in Sagittal Plane. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 3167-3176.	4.7	19
40	SVR Versus Neural-Fuzzy Network Controllers for the Sagittal Balance of a Biped Robot. IEEE Transactions on Neural Networks, 2009, 20, 1885-1897.	4.2	35
41	Neuro-fuzzy control of a biped robot able to be subjected to an external pushing force in the sagittal plane. , 2008, , .		1
42	A Human Gait Analyzer. , 2007, , .		13
43	Simulation control of a biped robot with Support Vector Regression. , 2007, , .		14