Jongsik Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249031/publications.pdf

Version: 2024-02-01

30	1,634	20	29
papers	citations	h-index	g-index
30	30	30	2420
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A pilot clinical study of low-intensity transcranial focused ultrasound in Alzheimer's disease. Ultrasonography, 2021, 40, 512-519.	1.0	29
2	Pt Dopant: Controlling the Ir Oxidation States toward Efficient and Durable Oxygen Evolution Reaction in Acidic Media. Advanced Functional Materials, 2020, 30, 2003935.	7.8	50
3	Electrocatalysts: Pt Dopant: Controlling the Ir Oxidation States toward Efficient and Durable Oxygen Evolution Reaction in Acidic Media (Adv. Funct. Mater. 38/2020). Advanced Functional Materials, 2020, 30, 2070253.	7.8	4
4	Stacked CdTe/CdS Nanodiscs via Intraparticle Migration of CdTe on CdS. Chemistry of Materials, 2020, 32, 10104-10112.	3.2	5
5	Janus to Core–Shell to Janus: Facile Cation Movement in Cu _{2–<i>x</i>} S/Ag ₂ S Hexagonal Nanoplates Induced by Surface Strain Control. ACS Nano, 2019, 13, 11834-11842.	7.3	23
6	Longitudinal Strain Engineering of Cu2–xS by the Juxtaposed Cu5FeS4 Phase in the Cu5FeS4/Cu2–xS/Cu5FeS4 Nanosandwich. Chemistry of Materials, 2019, 31, 9070-9077.	3.2	12
7	Hemi-core@frame AuCu@IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media. Nanoscale Horizons, 2019, 4, 727-734.	4.1	43
8	Dendrite-Embedded Platinum–Nickel Multiframes as Highly Active and Durable Electrocatalyst toward the Oxygen Reduction Reaction. Nano Letters, 2018, 18, 2930-2936.	4. 5	121
9	Vertexâ€Reinforced PtCuCo Ternary Nanoframes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction and the Methanol Oxidation Reaction. Advanced Functional Materials, 2018, 28, 1706440.	7.8	161
10	Ni@Ru and NiCo@Ru Core–Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell. Small, 2018, 14, 1702353.	5 . 2	50
11	RuO _x -decorated multimetallic hetero-nanocages as highly efficient electrocatalysts toward the methanol oxidation reaction. Nanoscale, 2018, 10, 21178-21185.	2.8	21
12	Alignment of Lyotropic Liquid Crystalline Conjugated Polymers in Floating Films. ACS Omega, 2018, 3, 14807-14813.	1.6	10
13	Highly Crystalline Pd ₁₃ Cu ₃ S ₇ Nanoplates Prepared via Partial Cation Exchange of Cu _{1.81} S Templates as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry of Materials, 2018, 30, 6884-6892.	3. 2	36
14	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
15	A facet-controlled Rh ₃ Pb ₂ S ₂ nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction. Nanoscale, 2018, 10, 9845-9850.	2.8	28
16	Janus Nanoparticle Structural Motif Control <i>via</i> Asymmetric Cation Exchange in Edge-Protected Cu _{1.81} S@Ir _{<i>x</i>} S _{<i>y</i>} Hexagonal Nanoplates. ACS Nano, 2018, 12, 7996-8005.	7.3	36
17	Cobalt Assisted Synthesis of IrCu Hollow Octahedral Nanocages as Highly Active Electrocatalysts toward Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1604688.	7.8	186
18	Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction. ACS Nano, 2017, 11, 5500-5509.	7.3	243

#	Article	IF	CITATIONS
19	Radially Phase Segregated PtCu@PtCuNi Dendrite@Frame Nanocatalyst for the Oxygen Reduction Reaction. ACS Nano, 2017, 11, 10844-10851.	7.3	110
20	Unexpected solution phase formation of hollow PtSn alloy nanoparticles from Sn deposition on Pt dendritic structures. CrystEngComm, 2016, 18, 6019-6023.	1.3	5
21	Synthesis of bare Pt ₃ Ni nanorods from PtNi@Ni core–shell nanorods by acid etching: one-step surfactant removal and phase conversion for optimal electrochemical performance toward oxygen reduction reaction. CrystEngComm, 2016, 18, 6002-6007.	1.3	19
22	Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts. Nanoscale, 2016, 8, 15167-15172.	2.8	23
23	RhCu 3D Nanoframe as a Highly Active Electrocatalyst for Oxygen Evolution Reaction under Alkaline Condition. Advanced Science, 2016, 3, 1500252.	5.6	48
24	Nanoparticles: Rational Synthesis of Heterostructured M/Pt (M = Ru or Rh) Octahedral Nanoboxes and Octapods and Their Structure-Dependent Electrochemical Activity Toward the Oxygen Evolution Reaction (Small $35/2015$). Small, 2015 , 11 , $4604-4604$.	5.2	0
25	Rational Synthesis of Heterostructured M/Pt ($M = Ru$ or Rh) Octahedral Nanoboxes and Octapods and Their Structure-Dependent Electrochemical Activity Toward the Oxygen Evolution Reaction. Small, 2015, 11, 4462-4468.	5.2	32
26	One pot synthesis of octahedral $\{111\}$ Culr gradient alloy nanocrystals with a Cu-rich core and an Ir-rich surface and their usage as efficient water splitting catalyst. CrystEngComm, 2015, 17, 6843-6847.	1.3	37
27	Facet-controlled {100}Rh–Pt and {100}Pt–Pt dendritic nanostructures by transferring the {100} facet nature of the core nanocube to the branch nanocubes. Nanoscale, 2015, 7, 3941-3946.	2.8	18
28	Morphological evolution of 2D Rh nanoplates to 3D Rh concave nanotents, hierarchically stacked nanoframes, and hierarchical dendrites. Nanoscale, 2015, 7, 3460-3465.	2.8	22
29	One pot synthesis of nanoscale phase-segregated PdPt nanoarchitectures via unusual Pt-doping induced structural reorganization of a Pd nanosheet into a PdPt nanotent. Nanoscale, 2014, 6, 10551.	2.8	19
30	One pot synthesis of hollow Cu-doped Ru octahedral nanocages via an in situ generated metastable Cu nanoparticle template. Nanoscale, 2014, 6, 12397-12402.	2.8	21