Veronica Piazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7248976/publications.pdf

Version: 2024-02-01

394286 454834 1,099 31 19 30 citations h-index g-index papers 31 31 31 1514 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicology and Environmental Safety, 2017, 145, 250-257.	2.9	212
2	Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Marine Environmental Research, 2018, 141, 313-321.	1.1	87
3	Trophic Transfer of Microplastics From Copepods to Jellyfish in the Marine Environment. Frontiers in Environmental Science, 2020, 8, .	1.5	86
4	Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms. Marine Environmental Research, 2012, 76, 97-107.	1.1	76
5	Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Marine Environmental Research, 2015, 111, 41-49.	1.1	74
6	Microplastics do not affect standard ecotoxicological endpoints in marine unicellular organisms. Marine Pollution Bulletin, 2019, 143, 140-143.	2.3	49
7	Terpenes from the Red Alga Sphaerococcus coronopifolius Inhibit the Settlement of Barnacles. Marine Biotechnology, 2011, 13, 764-772.	1.1	46
8	Effects of nano carbon black and single-layer graphene oxide on settlement, survival and swimming behaviour of <i>Amphibalanus amphitrite </i> larvae. Chemistry and Ecology, 2013, 29, 643-652.	0.6	46
9	Old model organisms and new behavioral end-points: Swimming alteration as an ecotoxicological response. Marine Environmental Research, 2017, 128, 36-45.	1.1	46
10	Microplastics ingestion in the ephyra stage of Aurelia sp. triggers acute and behavioral responses. Ecotoxicology and Environmental Safety, 2020, 189, 109983.	2.9	45
11	Toxic effects of Ostreopsis ovata on larvae and juveniles of Paracentrotus lividus. Harmful Algae, 2012, 18, 16-23.	2.2	43
12	Adverse effects of the SSRI antidepressant sertraline on early life stages of marine invertebrates. Marine Environmental Research, 2017, 128, 88-97.	1.1	33
13	A standardization of Amphibalanus (Balanus) amphitrite (Crustacea, Cirripedia) larval bioassay for ecotoxicological studies. Ecotoxicology and Environmental Safety, 2012, 79, 134-138.	2.9	32
14	Lethal and sublethal endpoints observed for Artemia exposed to two reference toxicants and an ecotoxicological concern organic compound. Ecotoxicology and Environmental Safety, 2016, 123, 60-64.	2.9	32
15	Antisettlement activity of synthetic analogues of polymeric 3-alkylpyridinium salts isolated from the spongeReniera sarai. Biofouling, 2005, 21, 49-57.	0.8	24
16	Effect of neurotoxic compounds on ephyrae of Aurelia aurita jellyfish. Hydrobiologia, 2015, 759, 75-84.	1.0	23
17	Temperature and salinity effects on cadmium toxicity on lethal and sublethal responses of Amphibalanus amphitrite nauplii. Ecotoxicology and Environmental Safety, 2016, 123, 8-17.	2.9	23
18	Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model. Marine Drugs, 2014, 12, 1959-1976.	2.2	21

#	Article	IF	CITATIONS
19	Ecotoxicological effects of sediments from Mar Piccolo, South Italy: toxicity testing with organisms from different trophic levels. Environmental Science and Pollution Research, 2016, 23, 12755-12769.	2.7	21
20	Tigriopus fulvus: The interlaboratory comparison of the acute toxicity test. Ecotoxicology and Environmental Safety, 2016, 124, 309-314.	2.9	14
21	Osmoregulated Chloride Currents in Hemocytes from Mytilus galloprovincialis. PLoS ONE, 2016, 11, e0167972.	1.1	11
22	Characterization of metalloproteinase-like activities in barnacle (Balanus amphitrite) nauplii. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 135, 17-24.	0.7	10
23	A new approach to testing potential leaching toxicity of fouling release coatings (FRCs). Marine Environmental Research, 2018, 141, 305-312.	1.1	9
24	The GABAergic-like system in the cyprid of Balanus amphitrite (=Amphibalanus amphitrite) (Cirripedia,) Tj ETQqC	0 0 rgBT /	Overlock 10 T
25	Renillenoic acids: Feeding deterrence and antifouling properties of conjugated fatty acids in Patagonian sea pen. Journal of Experimental Marine Biology and Ecology, 2012, 416-417, 208-214.	0.7	7
26	Nitric oxide synthase (NOS) in the cyprid of Amphibalanus amphitrite (Cirripedia, Crustacea). Neuroscience Letters, 2013, 555, 209-214.	1.0	6
27	Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius. Marine Drugs, 2022, 20, 7.	2.2	6
28	Gâ€protein alpha subunits distribution in the cyprid of <i>Balanus amphitrite</i> (= <i>Amphibalanus) Tj ETQq0</i>	0 0 rgBT /0	Overlock 10 Tf
29	Toxicological response of∢i>Amphibalanus amphitrite∢/i>larvae as an indirect evaluation of antifouling paints' efficacy. Chemistry and Ecology, 2011, 27, 87-95.	0.6	3
30	Ecotoxicological Effects of Microplastics in Marine Zooplankton. Springer Water, 2020, , 234-239.	0.2	2
31	Cold storage effects on lethal and sublethal responses of Amphibalanus amphitrite Nauplii. Ecotoxicology, 2022, 31, 1078-1086.	1.1	1