List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7248646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The design of luminescent sensors for anions and ionisable analytes. Coordination Chemistry Reviews, 2000, 205, 85-108.	9.5	335
2	Molecular Recognition of Carboxylate Ions Based on the Metal–Ligand Interaction and Signaled through Fluorescence Quenching. Angewandte Chemie International Edition in English, 1996, 35, 202-204.	4.4	318
3	Light-emitting molecular devices based on transition metals. Coordination Chemistry Reviews, 2006, 250, 273-299.	9.5	318
4	Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie - International Edition, 2002, 41, 3811-3814.	7.2	272
5	Antibacterial Activity of Glutathione-Coated Silver Nanoparticles against Gram Positive and Gram Negative Bacteria. Langmuir, 2012, 28, 8140-8148.	1.6	271
6	Fluorescent Sensors for Transition Metals Based on Electronâ€Transfer and Energyâ€Transfer Mechanisms. Chemistry - A European Journal, 1996, 2, 75-82.	1.7	267
7	Some guidelines for the design of anion receptors. Coordination Chemistry Reviews, 2006, 250, 1451-1470.	9.5	239
8	Designing the Selectivity of the Fluorescent Detection of Amino Acids:Â A Chemosensing Ensemble for Histidine. Journal of the American Chemical Society, 2003, 125, 20-21.	6.6	229
9	A Colorimetric Approach to Anion Sensing: A Selective Chemosensor of Fluoride Ions, in which Color is Generated by Anion-Enhancedi€ Delocalization. Angewandte Chemie - International Edition, 2004, 43, 1962-1965.	7.2	211
10	Synthesis, Characterization and Antibacterial Activity against Gram Positive and Gram Negative Bacteria of Biomimetically Coated Silver Nanoparticles. Langmuir, 2011, 27, 9165-9173.	1.6	186
11	Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials, 2014, 35, 1779-1788.	5.7	185
12	Sensing of transition metals through fluorescence quenching or enhancement. A review. Analyst, The, 1996, 121, 1763.	1.7	150
13	Anion recognition by dimetallic cryptates. Coordination Chemistry Reviews, 2001, 219-221, 821-837.	9.5	138
14	A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal-Ligand Interactions. Angewandte Chemie - International Edition, 2001, 40, 3066-3069.	7.2	137
15	A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie - International Edition, 2004, 43, 3847-3852.	7.2	135
16	Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity. Journal of Colloid and Interface Science, 2010, 350, 110-116.	5.0	130
17	(Benzylideneamino)thioureas – Chromogenic Interactions with Anions and N–H Deprotonation. European Journal of Organic Chemistry, 2006, 2006, 3567-3574. 	1.2	118
18	Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication. Chemical Communications, 2014, 50, 1969-1971.	2.2	111

#	Article	IF	CITATIONS
19	Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. Journal of Colloid and Interface Science, 2017, 498, 271-281.	5.0	110
20	Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chemical Communications, 2013, 49, 6265.	2.2	104
21	Fluorescent sensor of imidazole and histidine. Chemical Communications, 1997, , 581-582.	2.2	103
22	The design of fluorescent sensors for anions: taking profit from the metal–ligand interaction and exploiting two distinct paradigms. Dalton Transactions, 2003, , 3471-3479.	1.6	101
23	Metal-Containing Trifurcate Receptor that Recognizes and Senses Citrate in Water. Organic Letters, 2005, 7, 2603-2606.	2.4	91
24	A fluorescent cage for anion sensing in aqueous solution. Chemical Communications, 1998, , 971-972.	2.2	90
25	Bulk Surfaces Coated with Triangular Silver Nanoplates: Antibacterial Action Based on Silver Release and Photo-Thermal Effect. Nanomaterials, 2017, 7, 7.	1.9	88
26	Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars. Langmuir, 2015, 31, 8081-8091.	1.6	84
27	A Sleeping Host Awoken by Its Guest: Recognition and Sensing of Imidazole-Containing Molecules Based on Double Cu2+ Translocation inside a Polyaza Macrocycle. Angewandte Chemie - International Edition, 2004, 43, 5073-5077.	7.2	83
28	Synthesis of branched Au nanoparticles with tunable near-infrared LSPR using a zwitterionic surfactant. Chemical Communications, 2011, 47, 1315-1317.	2.2	82
29	Fluorescence Sensing of Ionic Analytes in Water: From Transition Metal Ions to Vitamin B13. Chemistry - A European Journal, 2002, 8, 94-101.	1.7	80
30	Controlled Synthesis of Gold Nanostars by Using a Zwitterionic Surfactant. Chemistry - A European Journal, 2012, 18, 9381-9390.	1.7	74
31	Fluorescent detection of glutamate with a dicopper(II) polyamine cage. Tetrahedron, 2004, 60, 11159-11162.	1.0	67
32	Signal Amplification by a Fluorescent Indicator of a pH-Driven Intramolecular Translocation of a Copper(II) Ion. Angewandte Chemie - International Edition, 2002, 41, 2553-2556.	7.2	66
33	Selfâ€Assembled Monolayers of Silver Nanoparticles: From Intrinsic to Switchable Inorganic Antibacterial Surfaces. European Journal of Inorganic Chemistry, 2018, 2018, 4846-4855.	1.0	65
34	Prussian Blue Nanoparticles as a Versatile Photothermal Tool. Molecules, 2018, 23, 1414.	1.7	61
35	A 3D network of helicates fully assembled by π-stacking interactions. Chemical Communications, 2003, , 1840-1841.	2.2	59
36	Chitosan/Glycosaminoglycan Scaffolds: The Role of Silver Nanoparticles to Control Microbial Infections in Wound Healing. Polymers, 2019, 11, 1207.	2.0	59

#	Article	IF	CITATIONS
37	Transition-metal-based Chemosensing Ensembles: ATP Sensing in Physiological Conditions. Supramolecular Chemistry, 2003, 15, 617-625.	1.5	54
38	Anion recognition by a dicopper (II) cryptate. Inorganica Chimica Acta, 1995, 238, 5-8.	1.2	53
39	A Versatile Fluorescent System for Sensing of H+, Transition Metals, and Aromatic Carboxylates. European Journal of Inorganic Chemistry, 1999, 1999, 35-39.	1.0	52
40	Seed mediated growth of silver nanoplates on glass: exploiting the bimodal antibacterial effect by near IR photo-thermal action and Ag ⁺ release. RSC Advances, 2016, 6, 70414-70423.	1.7	52
41	A Zinc(II)-Driven Intramolecular Photoinduced Electron Transfer. Inorganic Chemistry, 1996, 35, 1733-1736.	1.9	51
42	pH-Controlled translocation of Nill within a ditopic receptor bearing an appended anthracene fragment: a mechanical switch of fluorescence. Dalton Transactions RSC, 2000, , 185-189.	2.3	48
43	The Molecular Design of Fluorescent Sensors for Ionic Analytes. Journal of Fluorescence, 1998, 8, 263-271.	1.3	46
44	Monolayers of polyethilenimine on flat glass: a versatile platform for cations coordination and nanoparticles grafting in the preparation of antibacterial surfaces. Dalton Transactions, 2012, 41, 2456.	1.6	45
45	A chiral probe for the detection of Cu(ii) by UV, CD and emission spectroscopies. Dalton Transactions, 2007, , 1588.	1.6	44
46	Molecular recognition of the imidazole residue by a dicopper(II) complex with a bisdien macrocycle bearing two pendant arms. Journal of the Chemical Society Chemical Communications, 1995, , 2439.	2.0	42
47	Fluorescent molecular sensing of amino acids bearing an aromatic residue. Perkin Transactions II RSC, 2001, , 2108-2113.	1.1	41
48	Linear recognition of dicarboxylates by ditopic macrocyclic complexes. New Journal of Chemistry, 2007, 31, 352.	1.4	41
49	Structurally-variable, rigid and optically-active D2 and D3 macrocycles possessing recognition properties towards C60. Organic and Biomolecular Chemistry, 2010, 8, 1640.	1.5	41
50	Coordination chemistry of surface-grafted ligands for antibacterial materials. Coordination Chemistry Reviews, 2014, 275, 37-53.	9.5	40
51	â€~On–off–on' fluorescent indicators of pH windows based on three separated components. Chemical Communications, 2002, , 2452-2453.	2.2	39
52	Modular approach for bimodal antibacterial surfaces combining photo-switchable activity and sustained biocidal release. Scientific Reports, 2017, 7, 5259.	1.6	39
53	Crystal and molecular structure and solution behaviour of low-spin Chemical Society Dalton Transactions, 1991, , 3263-3269.	1.1	38
54	Monitoring the Redox-Driven Assembly/Disassembly of a Dicopper(I) Helicate with an Auxiliary Fluorescent Probe. Inorganic Chemistry, 2003, 42, 1632-1636.	1.9	38

#	Article	IF	CITATIONS
55	Monolayers of gold nanostars with two near-IR LSPRs capable of additive photothermal response. Chemical Communications, 2015, 51, 12928-12930.	2.2	35
56	Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms. Beilstein Journal of Nanotechnology, 2020, 11, 1134-1146.	1.5	34
57	In situ seed-growth synthesis of silver nanoplates on glass for the detection of food contaminants by surface enhanced Raman scattering. Talanta, 2020, 216, 120936.	2.9	34
58	Sulfonamide-imines as selective fluorescent chemosensors for the fluoride anion. Organic and Biomolecular Chemistry, 2010, 8, 357-362.	1.5	33
59	Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications. Beilstein Journal of Nanotechnology, 2018, 9, 2040-2048.	1.5	30
60	High Stability Thiol-Coated Gold Nanostars Monolayers with Photo-Thermal Antibacterial Activity and Wettability Control. Nanomaterials, 2019, 9, 1288.	1.9	30
61	Molecular rearrangements controlled by pH-driven Cu2+ motions. Dalton Transactions RSC, 2001, , 3528-3533.	2.3	28
62	Robust, reproducible, recyclable SERS substrates: monolayers of gold nanostars grafted on glass and coated with a thin silica layer. Nanotechnology, 2019, 30, 025302.	1.3	28
63	Nickel(III)-promoted deprotonation of an amide group of cyclam. Characterization of the violet transient through stopped-flow spectrophotometric techniques and determination of the pKA value. Inorganic Chemistry, 1994, 33, 134-139.	1.9	24
64	Coordinative control of photoinduced electron transfer: bulky carboxylates as molecular curtains. Chemical Communications, 2002, , 1348-1349.	2.2	24
65	The influence of the boat-to-chair conversion on the demetallation of the nickel(ii) complex of an open-chain tetramine containing a piperazine fragment. Dalton Transactions, 2004, , 653.	1.6	24
66	Single and Double pH-Driven Cu2+ Translocation with Molecular Rearrangement in Alkyne-Functionalized Polyamino Polyamido Ligands. Chemistry - A European Journal, 2006, 12, 5535-5546.	1.7	24
67	Self-Assembled Monolayers of Copper Sulfide Nanoparticles on Glass as Antibacterial Coatings. Nanomaterials, 2020, 10, 352.	1.9	24
68	Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chemistry - A European Journal, 2021, 27, 15361-15374.	1.7	24
69	A structurally characterized azide-bridged dinuclear nickel (II) cryptate. Inorganica Chimica Acta, 1996, 244, 7-9.	1.2	23
70	A monolayer of a Cu2+-tetraazamacrocyclic complex on glass as the adhesive layer for silver nanoparticles grafting, in the preparation of surface-active antibacterial materials. New Journal of Chemistry, 2011, 35, 1198.	1.4	23
71	Gold nanostar–polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells. International Journal of Pharmaceutics, 2017, 519, 113-124.	2.6	22
72	Novel photo-thermally active polyvinyl alcohol-Prussian blue nanoparticles hydrogel films capable of eradicating bacteria and mitigating biofilms. Nanotechnology, 2019, 30, 295702.	1.3	22

ANGELO TAGLIETTI

#	Article	IF	CITATIONS
73	Coordination chemistry for antibacterial materials: a monolayer of a Cu2+ 2,2′-bipyridine complex grafted on a glass surface. Dalton Transactions, 2013, 42, 4552.	1.6	21
74	Novel DFO-SAM on mesoporous silica for iron sensing. Part I. Synthesis optimization and characterization of the material. Analyst, The, 2014, 139, 3932.	1.7	20
75	Fast dissolution of silver nanoparticles at physiological pH. Journal of Colloid and Interface Science, 2020, 563, 177-188.	5.0	20
76	PVA Films with Mixed Silver Nanoparticles and Gold Nanostars for Intrinsic and Photothermal Antibacterial Action. Nanomaterials, 2021, 11, 1387.	1.9	20
77	Mixing thiols on the surface of silver nanoparticles: preserving antibacterial properties while introducing SERS activity. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	19
78	A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	19
79	Self-assembled monolayers of Prussian blue nanoparticles with photothermal effect. Supramolecular Chemistry, 2017, 29, 823-833.	1.5	19
80	Molekulare Erkennung von Carboxylatâ€lonen durch Metallâ€Ligandâ€Wechselwirkung und Nachweis durch Fluoreszenzlöschung. Angewandte Chemie, 1996, 108, 224-227.	1.6	18
81	Does a Reinforced Kinetic Macrocyclic Effect Exist? The Demetallation in Strong Acid of Copper(II) Complexes with Open and Cyclic Tetramines Containing a Piperazine Fragment. Chemistry - A European Journal, 2004, 10, 3209-3216.	1.7	17
82	Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging. Nanotechnology, 2016, 27, 265302.	1.3	17
83	A Loose Cage for Transition Metals. Inorganic Chemistry, 1997, 36, 1998-2003.	1.9	16
84	Synthesis of reduced-size gold nanostars and internalization in SH-SY5Y cells. Journal of Colloid and Interface Science, 2017, 505, 1055-1064.	5.0	16
85	Tailored coating of gold nanostars: rational approach to prototype of theranostic device based on SERS and photothermal effects at ultralow irradiance. Nanotechnology, 2018, 29, 235301.	1.3	16
86	Optical Method for Predicting the Composition of Self-Assembled Monolayers of Mixed Thiols on Surfaces Coated with Silver Nanoparticles. Langmuir, 2012, 28, 3558-3568.	1.6	14
87	Gold nanostars coated with neutral and charged polyethylene glycols: A comparative study of in-vitro biocompatibility and of their interaction with SH-SY5Y neuroblastoma cells. Journal of Inorganic Biochemistry, 2015, 151, 123-131.	1.5	14
88	Fluorescent Sensors for and with Transition Metals. Perspectives in Supramolecular Chemistry, 0, , 93-134.	0.1	14
89	Title is missing!. Angewandte Chemie, 2002, 114, 2665-2668.	1.6	13
90	High Bactericidal Self-Assembled Nano-Monolayer of Silver Sulfadiazine on Hydroxylated Material Surfaces. Materials, 2019, 12, 2761.	1.3	12

#	Article	IF	CITATIONS
91	Gold Nanostars Embedded in PDMS Films: A Photothermal Material for Antibacterial Applications. Nanomaterials, 2021, 11, 3252.	1.9	12
92	Molecular Devices Based on Metallocyclam Subunits. Advances in Inorganic Chemistry, 2006, 59, 81-107.	0.4	11
93	Gold nanostars co-coated with the Cu(<scp>ii</scp>) complex of a tetraazamacrocyclic ligand. Dalton Transactions, 2015, 44, 5652-5661.	1.6	11
94	Increased Antibacterial and Antibiofilm Properties of Silver Nanoparticles Using Silver Fluoride as Precursor. Molecules, 2020, 25, 3494.	1.7	11
95	Zinc(ii) driven intra-molecular electronic energy transfer in a supramolecular assembly held by coordinative interactions. Chemical Communications, 2001, , 825-826.	2.2	10
96	Intra-molecular Electronic Energy Transfer in Mono- and Di-nuclear Zinc(II) Supramolecular Complexes. Supramolecular Chemistry, 2002, 14, 127-132.	1.5	10
97	Surface Minimal Bactericidal Concentration: A comparative study of active glasses functionalized with different-sized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111800.	2.5	9
98	Supramolecular assemblies containing metallocyclam subunits. Supramolecular Chemistry, 1996, 6, 239-250.	1.5	8
99	pH-Driven Cu2+ Translocation in Ferrocene-Containing Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 4649-4657.	1.0	8
100	SERS Activity of Silver Nanoparticles Functionalized with A Desferrioxamine B Derived Ligand for FE(III) Binding and Sensing. Journal of Applied Spectroscopy, 2016, 82, 1052-1059.	0.3	8
101	Photothermally Responsive Inks for Inkjetâ€Printing Secure Information. Particle and Particle Systems Characterization, 2018, 35, 1800095.	1.2	8
102	Stable and scalable SERS tags conjugated with neutravidin for the detection of fibroblast activation protein (FAP) in primary fibroblasts. Nanotechnology, 2021, 32, 295703.	1.3	8
103	The pH controlled uptake/release of citrate by a tri-copper(ii) complex. New Journal of Chemistry, 2008, 32, 1839.	1.4	7
104	A bistren cryptand with a remote thioether function: Cu(<scp>ii</scp>) complexation in solution and on the surface of gold nanostars. New Journal of Chemistry, 2016, 40, 5722-5730.	1.4	7
105	An Anthracene Based Photoswitchable Dioxo-Tetraaza Ligand Selective for Cull and Capable of Photochemical pKa Modulation. European Journal of Inorganic Chemistry, 2011, 2011, 1212-1218.	1.0	5
106	Suitable Polymeric Coatings to Avoid Localized Surface Plasmon Resonance Hybridization in Printed Patterns of Photothermally Responsive Gold Nanoinks. Molecules, 2020, 25, 2499.	1.7	4
107	Prussian Blue and Its Analogs as Novel Nanostructured Antibacterial Materials. Applied Nano, 2021, 2, 85-97.	0.9	4
108	Grafted monolayers of the neutral Cu(ii) complex of a dioxo-2,3,2 ligand: surfaces with decreased antibacterial action. New Journal of Chemistry, 2018, 42, 7595-7598.	1.4	3

ANGELO TAGLIETTI

#	Article	IF	CITATIONS
109	Special Issue on Nano-Systems for Antimicrobial Therapy. Applied Sciences (Switzerland), 2019, 9, 1292.	1.3	2
110	Chemical and Physical Characterisation of Macroaggregated Human Serum Albumin: Strength and Specificity of Bonds with 99mTc and 68Ga. Molecules, 2022, 27, 404.	1.7	1
111	Yellow transient forms in the decomposition in acidic solution of the blue–violet nickel(ii) complex of a trifurcated hexamine. Dalton Transactions, 2005, , 2672.	1.6	0
112	Host—Guest and Cageâ€Type Systems. ChemInform, 2002, 33, 257-257.	0.1	0
113	Introducing Applied Nano: An Interdisciplinary Open Access Journal Showing How Nanoscience Can Offer Solutions to Different Problems and Needs. Applied Nano, 2020, 1, 1-2.	0.9	0
114	Frontispiece: Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chemistry - A European Journal, 2021, 27, .	1.7	0