
Shu-Hui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7248627/publications.pdf Version: 2024-02-01

Sun Hurli

#	Article	IF	CITATIONS
1	Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells. Chemical Research in Chinese Universities, 2022, 38, 75-81.	2.6	8
2	Tunable photocatalytic oxysulfonylation and chlorosulfonylation of α-CF ₃ alkenes with sulfonyl chlorides. Organic Chemistry Frontiers, 2022, 9, 709-714.	4.5	17
3	Mechanochemical Synthesis of 2â€Arylquinoxalines and 3â€Arylquinoxalinâ€2(1 <i>H</i>)â€ones via Aryldiazonium Salts. Advanced Synthesis and Catalysis, 2022, 364, 1080-1084.	4.3	9
4	Tailoring Functional Terminals on Solution-Processable Fullerene Electron Transporting Materials for High Performance Perovskite Solar Cells. Nanomaterials, 2022, 12, 1046.	4.1	3
5	Targeted Molecular Design of Functionalized Fullerenes for Highâ€Performance and Stable Perovskite Solar Cells. Small Structures, 2022, 3, .	12.0	17
6	Biomass-derived O, N-codoped hierarchically porous carbon prepared by black fungus and Hericium erinaceus for high performance supercapacitor. RSC Advances, 2021, 11, 27860-27867.	3.6	7
7	Multifunctional Molecular Design of a New Fulleropyrrolidine Electron Transport Material Family Engenders High Performance of Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107695.	14.9	17
8	Corannulene-based hole-transporting material for efficient and stable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100662.	5.6	13
9	Mixed Fullerene Electron Transport Layers with Fluorocarbon Chains Assembling on the Surface: A Moisture-Resistant Coverage for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 35081-35087.	8.0	16
10	Regioisomeric α-[70]fullerene-fused lactones: Synthesis, characterization and solubility difference. Tetrahedron Letters, 2020, 61, 152607.	1.4	1
11	Star-like hexakis[di(ethoxycarbonyl)methano]-C60 with higher electron mobility: An unexpected electron extractor interfaced in photovoltaic perovskites. Nano Energy, 2020, 74, 104859.	16.0	20
12	Hybrid Fullerene-Based Electron Transport Layers Improving the Thermal Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 20733-20740.	8.0	39
13	General One-step Synthesis of Symmetrical or Unsymmetrical 1,4-Di(organo)fullerenes from Organo(hydro)fullerenes through Direct Oxidative Arylation. Journal of Organic Chemistry, 2019, 84, 12259-12267.	3.2	3
14	Rational synthesis of an atomically precise carboncone under mild conditions. Science Advances, 2019, 5, eaaw0982.	10.3	43
15	Flexible decapyrrylcorannulene hosts. Nature Communications, 2019, 10, 485.	12.8	52
16	An Unconventional Hydrofullerene C ₆₆ H ₄ with Symmetric Heptagons Retrieved in Low-Pressure Combustion. Journal of the American Chemical Society, 2019, 141, 6651-6657.	13.7	35
17	Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells. Journal of Power Sources, 2018, 389, 13-19.	7.8	15
18	Interfacing Pristine C ₆₀ onto TiO ₂ for Viable Flexibility in Perovskite Solar Cells by a Lowâ€Temperature Allâ€Solution Process. Advanced Energy Materials, 2018, 8, 1800399.	19.5	72

Sнu-Hui Li

#	Article	IF	CITATIONS
19	Controlled Synthesis of C ₇₀ Equatorial Multiadducts with Mixed Addends from an Equatorial Diadduct: Evidence for an Electrophilic Carbanion. Organic Letters, 2018, 20, 2328-2332.	4.6	16
20	Regiocontrolled Electrosynthesis of [60]Fullerene Bisadducts: Photovoltaic Performance and Crystal Structures of C ₆₀ <i>o</i> -Quinodimethane Bisadducts. Journal of Organic Chemistry, 2017, 82, 8676-8685.	3.2	15
21	Reductive Activation of C ₇₀ Equatorial Carbons and Structurally Characterized C ₇₀ δ-Adduct with Closed [5,6]-Ring Fusion. Journal of Organic Chemistry, 2017, 82, 9253-9257.	3.2	12
22	Regioisomer-specific electron affinities and electronic structures of C70para-adducts at polar and equatorial positions with (bromo)benzyl radicals: photoelectron spectroscopy and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 18683-18686.	2.8	1
23	Tailorable PC ₇₁ BM Isomers: Using the Most Prevalent Electron Acceptor to Obtain Highâ€Performance Polymer Solar Cells. Chemistry - A European Journal, 2016, 22, 18709-18713.	3.3	15
24	Multifunctionalization of C ₇₀ at the two polar regions with a high regioselectivity via oxazolination and benzylation reactions. Chemical Communications, 2016, 52, 5710-5713.	4.1	9
25	Reductive Benzylation of Singly Bonded 1,2,4,15-C ₆₀ Dimers with an Oxazoline or Imidazoline Heterocycle: Unexpected Formation of 1,2,3,16-C ₆₀ Adducts and Insights into the Reactivity of Singly Bonded C ₆₀ Dimers. Journal of Organic Chemistry, 2015, 80, 3566-3571.	3.2	8
26	Base-Promoted Consecutive Enolate Addition Reaction of [60]Fullerene with Ketones. Organic Letters, 2015, 17, 5192-5195.	4.6	23
27	Vis-Near-IR Spectroscopic and Time-Dependent DFT Study of Reduced Singly Bonded C ₆₀ Species. Journal of Physical Chemistry A, 2015, 119, 9534-9540.	2.5	10
28	Approach to High Open ircuit Voltage in Organic Solar Cells Utilizing a Structural Change of the Oxazolino ₇₀ Derivative. Chemistry - A European Journal, 2015, 21, 1894-1899.	3.3	11
29	Oxazoline and Imidazoline Functionalization of a C ₆₀ Dimer via the Reaction of C ₆₀ HBn and Aromatic Nitriles with a Bifunctional Hydroxide. Journal of Organic Chemistry, 2014, 79, 197-203.	3.2	9
30	Reactions of C ₇₀ ^{2–} with Organic Halides Revisited: Unusual Magnetic Equivalence for the Diastereotopic Methylene Protons in 2,5-(PhCH ₂) ₂ C ₇₀ . Journal of Organic Chemistry, 2013, 78, 7208-7215.	3.2	16
31	Hydroxide-Initiated Conversion of Aromatic Nitriles to Imidazolines: Fullerenes vs TCNE. Organic Letters, 2013, 15, 4646-4649.	4.6	16
32	Oxazolination of 1,4-(PhCH ₂) ₂ C ₆₀ : Toward a Better Understanding of Multiadditions of Heteroaddends. Organic Letters, 2012, 14, 3482-3485.	4.6	12