Sanggeun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7247974/publications.pdf

Version: 2024-02-01

24 papers 1,770 citations

15 h-index 610482 24 g-index

27 all docs

27 docs citations

times ranked

27

3320 citing authors

#	Article	IF	CITATIONS
1	Cerebral Oximetry: Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics (Adv. Funct. Mater. 29/2020). Advanced Functional Materials, 2020, 30, 2070198.	7.8	1
2	Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H ₂ Sensors. ACS Applied Materials & Sensors. ACS Applied Materials	4.0	16
3	Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics. Advanced Functional Materials, 2020, 30, 1910026.	7.8	47
4	Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Waterâ€Resistant Multimodal Gestureâ€Distinguishable Sensor, VR Applications. Advanced Functional Materials, 2019, 29, 1905808.	7.8	78
5	A HARQ Combining Method for FDD-Based Flexible Duplex System. IEEE Wireless Communications Letters, 2019, 8, 1369-1372.	3.2	0
6	A Scaled Cyclic Delay Diversity Based Precoding for Coded MIMO-OFDM System. IEEE Transactions on Vehicular Technology, 2019, 68, 5723-5731.	3.9	2
7	Spray Coating Technologies: Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Waterâ€Resistant Multimodal Gestureâ€Distinguishable Sensor, VR Applications (Adv. Funct. Mater.) Tj ETQq.	17180.7843	3 ₫ 4 rgBT /○
8	Nonfluorinated Superomniphobic Surfaces through Shape-Tunable Mushroom-like Polymeric Micropillar Arrays. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5484-5491.	4.0	26
9	Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. ACS Nano, 2018, 12, 4259-4268.	7.3	207
10	A Dropletâ€Based Highâ€Throughput SERS Platform on a Dropletâ€Guidingâ€Trackâ€Engraved Superhydrophobic Substrate. Small, 2017, 13, 1602865.	5.2	38
11	Bioinspired Geometryâ€Switchable Janus Nanofibers for Eyeâ€Readable H ₂ Sensors. Advanced Functional Materials, 2017, 27, 1701618.	7.8	43
12	A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. NPG Asia Materials, 2016, 8, e262-e262.	3.8	15
13	Ultrafast single-droplet bouncing actuator with electrostatic force on superhydrophobic electrodes. RSC Advances, 2016, 6, 66729-66737.	1.7	19
14	Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Realâ€Time Tactile Sensing. Advanced Electronic Materials, 2016, 2, 1600356.	2.6	264
15	Pressure Sensors: Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing (Adv. Electron. Mater. 12/2016). Advanced Electronic Materials, 2016, 2, .	2.6	1
16	Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective. Nanomaterials, 2015, 5, 1493-1531.	1.9	81
17	Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	14
18	A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3554-3561.	4.0	184

Sanggeun Lee

#	Article	IF	CITATION
19	Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics. Advanced Functional Materials, 2015, 25, 3114-3121.	7.8	493
20	Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties. RSC Advances, 2014, 4, 60123-60130.	1.7	22
21	Graphene as an atomically thin barrier to Cu diffusion into Si. Nanoscale, 2014, 6, 7503-7511.	2.8	89
22	Simple coating method of carbonaceous film onto copper nanopowder using PVP as solid carbon source. Materials Chemistry and Physics, 2014, 148, 859-867.	2.0	10
23	Capillary Force-Induced Glue-Free Printing of Ag Nanoparticle Arrays for Highly Sensitive SERS Substrates. ACS Applied Materials & Substrates.	4.0	43
24	Synthesis of Few-Layered Graphene Nanoballs with Copper Cores Using Solid Carbon Source. ACS Applied Materials & Distribution (2013), 5, 2432-2437.	4.0	62