Sanggeun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7247974/publications.pdf Version: 2024-02-01

SANCCEUN LEE

#	Article	IF	CITATIONS
1	Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics. Advanced Functional Materials, 2015, 25, 3114-3121.	7.8	493
2	Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Realâ€Time Tactile Sensing. Advanced Electronic Materials, 2016, 2, 1600356.	2.6	264
3	Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. ACS Nano, 2018, 12, 4259-4268.	7.3	207
4	A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Applied Materials & Interfaces, 2015, 7, 3554-3561.	4.0	184
5	Graphene as an atomically thin barrier to Cu diffusion into Si. Nanoscale, 2014, 6, 7503-7511.	2.8	89
6	Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective. Nanomaterials, 2015, 5, 1493-1531.	1.9	81
7	Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Waterâ€Resistant Multimodal Gestureâ€Distinguishable Sensor, VR Applications. Advanced Functional Materials, 2019, 29, 1905808.	7.8	78
8	Synthesis of Few-Layered Graphene Nanoballs with Copper Cores Using Solid Carbon Source. ACS Applied Materials & Interfaces, 2013, 5, 2432-2437.	4.0	62
9	Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics. Advanced Functional Materials, 2020, 30, 1910026.	7.8	47
10	Capillary Force-Induced Glue-Free Printing of Ag Nanoparticle Arrays for Highly Sensitive SERS Substrates. ACS Applied Materials & Interfaces, 2014, 6, 9053-9060.	4.0	43
11	Bioinspired Geometryâ€&witchable Janus Nanofibers for Eyeâ€Readable H ₂ Sensors. Advanced Functional Materials, 2017, 27, 1701618.	7.8	43
12	A Dropletâ€Based Highâ€Throughput SERS Platform on a Dropletâ€Guidingâ€Trackâ€Engraved Superhydrophobi Substrate. Small, 2017, 13, 1602865.	C 5.2	38
13	Nonfluorinated Superomniphobic Surfaces through Shape-Tunable Mushroom-like Polymeric Micropillar Arrays. ACS Applied Materials & Interfaces, 2019, 11, 5484-5491.	4.0	26
14	Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties. RSC Advances, 2014, 4, 60123-60130.	1.7	22
15	Ultrafast single-droplet bouncing actuator with electrostatic force on superhydrophobic electrodes. RSC Advances, 2016, 6, 66729-66737.	1.7	19
16	Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H ₂ Sensors. ACS Applied Materials & Interfaces, 2020, 12, 45243-45253.	4.0	16
17	A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. NPG Asia Materials, 2016, 8, e262-e262.	3.8	15
18	Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	14

SANGGEUN LEE

#	Article	IF	CITATIONS
19	Simple coating method of carbonaceous film onto copper nanopowder using PVP as solid carbon source. Materials Chemistry and Physics, 2014, 148, 859-867.	2.0	10
20	A Scaled Cyclic Delay Diversity Based Precoding for Coded MIMO-OFDM System. IEEE Transactions on Vehicular Technology, 2019, 68, 5723-5731.	3.9	2
21	Pressure Sensors: Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing (Adv. Electron. Mater. 12/2016). Advanced Electronic Materials, 2016, 2, .	2.6	1
22	Cerebral Oximetry: Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics (Adv. Funct. Mater. 29/2020). Advanced Functional Materials, 2020, 30, 2070198.	7.8	1
23	A HARQ Combining Method for FDD-Based Flexible Duplex System. IEEE Wireless Communications Letters, 2019, 8, 1369-1372.	3.2	0

Spray Coating Technologies: Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Waterâ€Resistant Multimodal Gestureâ€Distinguishable Sensor, VR Applications (Adv. Funct. Mater.) Tj ETQq07080 rgBT Øverlock 1 24