
Jian-He Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7247942/publications.pdf Version: 2024-02-01

IIAN-HE XI

#	Article	IF	CITATIONS
1	Biocatalytic ketone reduction: A green and efficient access to enantiopure alcohols. Biotechnology Advances, 2012, 30, 1279-1288.	11.7	201
2	New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Current Opinion in Biotechnology, 2011, 22, 784-792.	6.6	153
3	Asymmetric Amination of Secondary Alcohols by using a Redoxâ€Neutral Twoâ€Enzyme Cascade. ChemCatChem, 2015, 7, 3838-3841.	3.7	108
4	Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angewandte Chemie - International Edition, 2015, 54, 12410-12415.	13.8	103
5	Reshaping the Active Pocket of Amine Dehydrogenases for Asymmetric Synthesis of Bulky Aliphatic Amines. ACS Catalysis, 2018, 8, 2622-2628.	11.2	100
6	Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor. ACS Catalysis, 2019, 9, 147-153.	11.2	93
7	Wholeâ€Cellâ€Catalyzed Multiple Regio―and Stereoselective Functionalizations in Cascade Reactions Enabled by Directed Evolution. Angewandte Chemie - International Edition, 2016, 55, 12026-12029.	13.8	79
8	Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15717-15722.	7.1	76
9	Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase <i>Cg</i> KR1. ACS Catalysis, 2017, 7, 7174-7181.	11.2	74
10	Newly Identified Thermostable Esterase from Sulfobacillus acidophilus: Properties and Performance in Phthalate Ester Degradation. Applied and Environmental Microbiology, 2014, 80, 6870-6878.	3.1	71
11	Efficient Synthesis of a Chiral Precursor for Angiotensin-Converting Enzyme (ACE) Inhibitors in High Space-Time Yield by a New Reductase without External Cofactors. Organic Letters, 2012, 14, 1982-1985.	4.6	68
12	Efficient Synthesis of Chiral Indolines using an Imine Reductase from <i>Paenibacillus lactis</i> . Advanced Synthesis and Catalysis, 2015, 357, 1692-1696.	4.3	65
13	Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresources and Bioprocessing, 2014, 1, .	4.2	61
14	Stereospecific Reduction of Methyl <i>o</i> â€Chlorobenzoylformate at 300â€gâ‹L ^{â^'1} without Additional Cofactor using a Carbonyl Reductase Mined from <i>Candida glabrata</i> . Advanced Synthesis and Catalysis, 2012, 354, 1765-1772.	4.3	59
15	Unusually Broad Substrate Profile of Self‣ufficient Cytochrome P450 Monooxygenase CYP116B4 from <i>Labrenzia aggregata</i> . ChemBioChem, 2014, 15, 2443-2449.	2.6	57
16	Identification of an Imine Reductase for Asymmetric Reduction of Bulky Dihydroisoquinolines. Organic Letters, 2017, 19, 3151-3154.	4.6	56
17	Efficient Reduction of Ethyl 2â€Oxoâ€4â€phenylbutyrate at 620â€gâ‹L ^{â^'1} by a Bacterial Reduct with Broad Substrate Spectrum. Advanced Synthesis and Catalysis, 2011, 353, 1213-1217.	ase 4.3	54
18	Enantioselective Synthesis of Chiral Vicinal Amino Alcohols Using Amine Dehydrogenases. ACS Catalysis, 2019, 9, 11813-11818.	11.2	54

#	Article	IF	CITATIONS
19	Enzymatic Production of <i>l</i> â€Menthol by a High Substrate Concentration Tolerable Esterase from Newly Isolated <i>Bacillus subtilis</i> ECU0554. Advanced Synthesis and Catalysis, 2009, 351, 405-414.	4.3	53
20	Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Organic and Biomolecular Chemistry, 2011, 9, 5463.	2.8	50
21	A Smart Library of Epoxide Hydrolase Variants and the Top Hits for Synthesis of (<i>S</i>)â€Î²â€Blocker Precursors. Angewandte Chemie - International Edition, 2014, 53, 6641-6644.	13.8	50
22	Isolation of <i>Rhodococcus</i> sp. Strain ECU0066, a New Sulfide Monooxygenase-Producing Strain for Asymmetric Sulfoxidation. Applied and Environmental Microbiology, 2009, 75, 551-556.	3.1	47
23	An Unusual (<i>R</i>)â€Selective Epoxide Hydrolase with High Activity for Facile Preparation of Enantiopure Glycidyl Ethers. Advanced Synthesis and Catalysis, 2011, 353, 1510-1518.	4.3	46
24	Switching Cofactor Dependence of 7β-Hydroxysteroid Dehydrogenase for Cost-Effective Production of Ursodeoxycholic Acid. ACS Catalysis, 2019, 9, 466-473.	11.2	46
25	A novel d-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids. Journal of Biotechnology, 2015, 195, 67-71.	3.8	45
26	Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation. Applied Microbiology and Biotechnology, 2010, 85, 615-624.	3.6	44
27	Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate and its derivatives by a robust NADH-dependent reductase from E. coli CCZU-K14. Bioresource Technology, 2014, 161, 461-464.	9.6	44
28	Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution. Journal of Agricultural and Food Chemistry, 2017, 65, 1178-1185.	5.2	43
29	Engineering of Cyclohexanone Monooxygenase for the Enantioselective Synthesis of (<i>S</i>)-Omeprazole. ACS Sustainable Chemistry and Engineering, 2019, 7, 7218-7226.	6.7	42
30	Asymmetric ring opening of racemic epoxides for enantioselective synthesis of (<i>S</i>)-β-amino alcohols by a cofactor self-sufficient cascade biocatalysis system. Catalysis Science and Technology, 2019, 9, 70-74.	4.1	39
31	Catalytic conversion of corncob to furfuryl alcohol in tandem reaction with tin-loaded sulfonated zeolite and NADPH-dependent reductase biocatalyst. Bioresource Technology, 2021, 320, 124267.	9.6	38
32	Efficient Synthesis of (<i>R</i>)â€2â€Chloroâ€1â€(2,4â€dichlorophenyl)ethanol with a Ketoreductase from <i>Scheffersomyces stipitis</i> CBS 6045. Advanced Synthesis and Catalysis, 2017, 359, 426-431.	4.3	37
33	Development of an engineered thermostable amine dehydrogenase for the synthesis of structurally diverse chiral amines. Catalysis Science and Technology, 2020, 10, 2353-2358.	4.1	37
34	Increased Catalyst Productivity in α-Hydroxy Acids Resolution by Esterase Mutation and Substrate Modification. ACS Catalysis, 2014, 4, 1026-1031.	11.2	36
35	Bioamination of alkane with ammonium by an artificially designed multienzyme cascade. Metabolic Engineering, 2018, 47, 184-189.	7.0	35
36	Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence through a Single Site Mutation. ACS Catalysis, 2018, 8, 8314-8317.	11.2	35

#	Article	IF	CITATIONS
37	Significant enhancement of lipase enantioselectivity toward (S)- Ketoprofen ester at pH 2. Biotechnology Letters, 1999, 21, 143-146.	2.2	34
38	Efficient preparation of (R)-?-monobenzoyl glycerol by lipase catalyzed asymmetric esterification: Optimization and operation in packed bed reactor. Biotechnology and Bioengineering, 2001, 73, 493-499.	3.3	33
39	Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. Journal of Biotechnology, 2019, 290, 24-32.	3.8	33
40	Enzymatic Preparation of the Chiral (<i>S</i>)-Sulfoxide Drug Esomeprazole at Pilot-Scale Levels. Organic Process Research and Development, 2020, 24, 1124-1130.	2.7	33
41	Continuous Production of Ursodeoxycholic Acid by Using Two Cascade Reactors with Coâ€immobilized Enzymes. ChemBioChem, 2018, 19, 347-353.	2.6	32
42	Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration. Applied Biochemistry and Biotechnology, 2020, 192, 530-543.	2.9	32
43	A Novel (<i>R</i>)â€Imine Reductase from <i>Paenibacillus lactis</i> for Asymmetric Reduction of 3 <i>H</i> â€Indoles. ChemCatChem, 2016, 8, 724-727.	3.7	30
44	Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnology and Bioengineering, 2016, 113, 2350-2357.	3.3	30
45	One-Pot Synthesis of Phenylglyoxylic Acid from Racemic Mandelic Acids via Cascade Biocatalysis. Journal of Agricultural and Food Chemistry, 2019, 67, 2946-2953.	5.2	30
46	Enantioselective bioreductive preparation of chiral halohydrins employing two newly identified stereocomplementary reductases. RSC Advances, 2015, 5, 22703-22711.	3.6	28
47	Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3247-3253.	1.7	27
48	Altering the Substrate Specificity of Reductase <i>Cg</i> KR1 from <i>Candida glabrata</i> by Protein Engineering for Bioreduction of Aromatic αâ€Keto Esters. Advanced Synthesis and Catalysis, 2014, 356, 1943-1948.	4.3	27
49	Efficient synthesis of a statin precursor in high space-time yield by a new aldehyde-tolerant aldolase identified from Lactobacillus brevis. Catalysis Science and Technology, 2015, 5, 4048-4054.	4.1	27
50	Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis. Applied and Environmental Microbiology, 2017, 83, .	3.1	27
51	Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP). Bioresources and Bioprocessing, 2017, 4, 37.	4.2	27
52	Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents. ChemBioChem, 2020, 21, 2680-2688.	2.6	26
53	Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase. Biochemistry, 2015, 54, 1841-1848.	2.5	25
54	Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides. Applied and Environmental Microbiology, 2018, 84, .	3.1	25

#	Article	IF	CITATIONS
55	Stereocomplementary Synthesis of Pharmaceutically Relevant Chiral 2-Aryl-Substituted Pyrrolidines Using Imine Reductases. Organic Letters, 2020, 22, 3367-3372.	4.6	25
56	Confining Enzyme Clusters in Bacteriophage P22 Enhances Cofactor Recycling and Stereoselectivity for Chiral Alcohol Synthesis. ACS Catalysis, 2021, 11, 10487-10493.	11.2	25
57	Identification of a Robust Carbonyl Reductase for Diastereoselectively Building <i>syn</i> -3,5-Dihydroxy Hexanoate: a Bulky Side Chain of Atorvastatin. Organic Process Research and Development, 2017, 21, 1349-1354.	2.7	24
58	Biosynthesis of Phenylglyoxylic Acid by LhDMDH, a Novel <scp>d</scp> -Mandelate Dehydrogenase with High Catalytic Activity. Journal of Agricultural and Food Chemistry, 2018, 66, 2805-2811.	5.2	24
59	Reductive Amination of Biobased Levulinic Acid to Unnatural Chiral γ-Amino Acid Using an Engineered Amine Dehydrogenase. ACS Sustainable Chemistry and Engineering, 2020, 8, 17054-17061.	6.7	24
60	Efficient production of diltiazem chiral intermediate using immobilized lipase from Serratia marcescens. Biotechnology and Bioprocess Engineering, 2010, 15, 199-207.	2.6	23
61	Optimization and Scale-up of a Bioreduction Process for Preparation of Ethyl (<i>S</i>)-4-Chloro-3-hydroxybutanoate. Organic Process Research and Development, 2014, 18, 739-743.	2.7	23
62	Identification of an εâ€Keto Ester Reductase for the Efficient Synthesis of an (<i>R</i>)â€Î±â€Łipoic Acid Precursor. Advanced Synthesis and Catalysis, 2015, 357, 1697-1702.	4.3	23
63	Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angewandte Chemie, 2015, 127, 12587-12592.	2.0	23
64	Crystal structures of Pseudomonas putida esterase reveal the functional role of residues 187 and 287 in substrate binding and chiral recognition. Biochemical and Biophysical Research Communications, 2014, 446, 1145-1150.	2.1	22
65	One Pot Asymmetric Synthesis of (<i>R</i>)â€Phenylglycinol from Racemic Styrene Oxide via Cascade Biocatalysis. ChemCatChem, 2019, 11, 3802-3807.	3.7	22
66	An Ammonium-Formate-Driven Trienzymatic Cascade for ï‰-Transaminase-Catalyzed (<i>R</i>)-Selective Amination. Journal of Organic Chemistry, 2019, 84, 14987-14993.	3.2	22
67	Efficient expression of novel glutamate decarboxylases and high level production of Î ³ -aminobutyric acid catalyzed by engineered Escherichia coli. International Journal of Biological Macromolecules, 2020, 160, 372-379.	7.5	22
68	Asymmetric Reductive Amination of Structurally Diverse Ketones with Ammonia Using a Spectrum-Extended Amine Dehydrogenase. ACS Catalysis, 2021, 11, 14274-14283.	11.2	22
69	Accelerated directed evolution of dye-decolorizing peroxidase using a bacterial extracellular protein secretion system (BENNY). Bioresources and Bioprocessing, 2019, 6, 20.	4.2	21
70	Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters. Journal of Biotechnology, 2015, 203, 54-61.	3.8	20
71	Hydroxynitrile Lyase Isozymes from <i>Prunus communis</i> : Identification, Characterization and Synthetic Applications. Advanced Synthesis and Catalysis, 2017, 359, 1185-1193.	4.3	20
72	Efficient Synthesis of 12â€Oxochenodeoxycholic Acid Using a 12αâ€Hydroxysteroid Dehydrogenase from <i>Rhodococcus ruber</i> . Advanced Synthesis and Catalysis, 2019, 361, 4661-4668.	4.3	20

#	Article	lF	CITATIONS
73	Structure-Guided Tuning of a Hydroxynitrile Lyase to Accept Rigid Pharmaco Aldehydes. ACS Catalysis, 2020, 10, 5757-5763.	11.2	20
74	Evolution of a Catalytic Mechanism. Molecular Biology and Evolution, 2016, 33, 971-979.	8.9	19
75	Improved expression of recombinant cytochrome P450 monooxygenase in Escherichia coli for asymmetric oxidation of sulfides. Bioprocess and Biosystems Engineering, 2010, 33, 1043-1049.	3.4	18
76	An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes. Enzyme and Microbial Technology, 2014, 56, 40-45.	3.2	18
77	Efficient Degradation of Malathion in the Presence of Detergents Using an Engineered Organophosphorus Hydrolase Highly Expressed by <i>Pichia pastoris</i> without Methanol Induction. Journal of Agricultural and Food Chemistry, 2017, 65, 9094-9100.	5.2	18
78	Engineering P450 _{LaMO} stereospecificity and product selectivity for selective C–H oxidation of tetralin-like alkylbenzenes. Catalysis Science and Technology, 2018, 8, 4638-4644.	4.1	17
79	High level and enantioselective production of L-phenylglycine from racemic mandelic acid by engineered Escherichia coli using response surface methodology. Enzyme and Microbial Technology, 2020, 136, 109513.	3.2	17
80	A new high-energy density hydrogen carrier-carbohydrate-might be better than methanol. International Journal of Energy Research, 2013, 37, 769-779.	4.5	16
81	Substrate channel evolution of an esterase for the synthesis of cilastatin. Catalysis Science and Technology, 2015, 5, 2622-2629.	4.1	16
82	Effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate by supplementation of l-glutamine, d-xylose and β-cyclodextrin in n-butyl acetate–water media. Journal of Biotechnology, 2015, 203, 62-67.	3.8	16
83	Synthetic Biomimetic Coenzymes and Alcohol Dehydrogenases for Asymmetric Catalysis. Catalysts, 2019, 9, 207.	3.5	16
84	Design of a self-sufficient hydride-shuttling cascade for concurrent bioproduction of 7,12-dioxolithocholate and <scp>l</scp> - <i>tert</i> leucine. Green Chemistry, 2021, 23, 4125-4133.	9.0	16
85	Enzymatic synthesis of high-titer nicotinamide mononucleotide with a new nicotinamide riboside kinase and an efficient ATP regeneration system. Bioresources and Bioprocessing, 2022, 9, .	4.2	16
86	Facile Synthesis of Enantiopure 4â€6ubstituted 2â€Hydroxyâ€4―butyrolactones using a Robust <i>Fusarium</i> Lactonase. Advanced Synthesis and Catalysis, 2009, 351, 2959-2966.	4.3	15
87	Cloning and Characterization of a Novel Esterase from Rhodococcus sp. for Highly Enantioselective Synthesis of a Chiral Cilastatin Precursor. Applied and Environmental Microbiology, 2014, 80, 7348-7355.	3.1	15
88	Efficient production of l-menthol in a two-phase system with SDS using an immobilized Bacillus subtilis esterase. Bioresources and Bioprocessing, 2014, 1, .	4.2	14
89	Exploitation of coldâ€active cephalosporin C acylase by computerâ€aided directed evolution and its potential application in lowâ€ŧemperature biosynthesis of 7â€aminocephalosporanic acid. Journal of Chemical Technology and Biotechnology, 2018, 93, 2925-2930.	3.2	14
90	Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors. Applied and Environmental Microbiology, 2022, 88, e0034122.	3.1	14

#	Article	IF	CITATIONS
91	Cross-linked enzyme-polymer conjugates with excellent stability and detergent-enhanced activity for efficient organophosphate degradation. Bioresources and Bioprocessing, 2018, 5, .	4.2	13
92	Direct Access to Mediumâ€Chain α,ï‰â€Dicarboxylic Acids by Using a Baeyer–Villiger Monooxygenase of Abnormal Regioselectivity. ChemBioChem, 2018, 19, 2049-2054.	2.6	13
93	Coevolution of the Activity and Thermostability of an ϵâ€Keto Ester Reductase for Better Synthesis of an (<i>R</i>)â€Î±â€Lipoic Acid Precursor. ChemBioChem, 2020, 21, 1341-1346.	2.6	13
94	Mining methods and typical structural mechanisms of terpene cyclases. Bioresources and Bioprocessing, 2021, 8, .	4.2	13
95	A PRACTICAL ENZYMATIC METHOD FOR PREPARATION OF (S)-KETOPROFEN WITH A CRUDECANDIDA RUGOSALIPASE. Synthetic Communications, 2001, 31, 3491-3496.	2.1	12
96	Enzymatic production of Cilastatin intermediate via highly enantioselective hydrolysis of methyl (±)-2,2-dimethylcyclopropane carboxylate using newly isolated Rhodococcus sp. ECU1013. Applied Microbiology and Biotechnology, 2013, 97, 7659-7667.	3.6	12
97	Identification of key residues in Debaryomyces hansenii carbonyl reductase for highly productive preparation of (S)-aryl halohydrins. Chemical Communications, 2015, 51, 15728-15731.	4.1	12
98	A green-by-design system for efficient bio-oxidation of an unnatural hexapyranose into chiral lactone for building statin side-chains. Catalysis Science and Technology, 2016, 6, 7094-7100.	4.1	12
99	Green access to chiral Vince lactam in a buffer-free aqueous system using a newly identified substrate-tolerant (â~)-γ-lactamase. Catalysis Science and Technology, 2016, 6, 6305-6310.	4.1	12
100	Enantioselective Bioamination of Aromatic Alkanes Using Ammonia: A Multienzymatic Cascade Approach. ChemCatChem, 2020, 12, 2077-2082.	3.7	12
101	Continuous-Flow Microreactor-Enhanced Clean NAD ⁺ Regeneration for Biosynthesis of 7-Oxo-lithocholic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 456-463.	6.7	12
102	Strain improvement of Serratia marcescens ECU1010 and medium cost reduction for economic production of lipase. World Journal of Microbiology and Biotechnology, 2010, 26, 537-543.	3.6	11
103	Draft Genome Sequence of <i>Burkholderia</i> sp. Strain MP-1, a Methyl Parathion (MP)-Degrading Bacterium from MP-Contaminated Soil. Genome Announcements, 2014, 2, .	0.8	11
104	Efficient synthesis of an ε-hydroxy ester in a space–time yield of 1580gLâ^'1dâ^'1 by a newly identified reductase RhCR. Tetrahedron: Asymmetry, 2014, 25, 1501-1504.	1.8	11
105	Efficient biosynthesis of rare natural product scopolamine using E. coli cells expressing a S14P/K97A mutant of hyoscyamine 6β-hydroxylase AaH6H. Journal of Biotechnology, 2015, 211, 123-129.	3.8	11
106	Improved efficiency of a novel methyl parathion hydrolase using consensus approach. Enzyme and Microbial Technology, 2016, 93-94, 11-17.	3.2	11
107	Dramatically Improved Performance of an Esterase for Cilastatin Synthesis by Cap Domain Engineering. Industrial & Engineering Chemistry Research, 2016, 55, 12167-12172.	3.7	11
108	Iterative multitarget evolution dramatically enhances the enantioselectivity and catalytic efficiency of Bacillus subtilis esterase towards bulky benzoate esters of <scp>dl</scp> -menthol. Catalysis Science and Technology, 2016, 6, 2370-2376.	4.1	11

#	Article	IF	CITATIONS
109	One pot simultaneous preparation of both enantiomer of β-amino alcohol and vicinal diol via cascade biocatalysis. Biotechnology Letters, 2018, 40, 349-358.	2.2	11
110	Characterization of a new nitrilase from Hoeflea phototrophica DFL-43 for a two-step one-pot synthesis of (S)-β-amino acids. Applied Microbiology and Biotechnology, 2018, 102, 6047-6056.	3.6	11
111	Identification two key residues at the intersection of domains of a thioether monooxygenase for improving its sulfoxidation performance. Biotechnology and Bioengineering, 2021, 118, 737-744.	3.3	11
112	ASYMMETRIC REDUCTION OF AROMATIC KETONES BY THE BAKER'S YEAST IN ORGANIC SOLVENT SYSTEMS. Synthetic Communications, 2001, 31, 1521-1526.	2.1	10
113	Thermodynamic Equilibrium Control of the Enzymatic Hydrolysis of Penicillin G in a Cloud Point System without pH Control. Industrial & Engineering Chemistry Research, 2006, 45, 8049-8055.	3.7	10
114	Enzymatic resolution of a chiral chlorohydrin precursor for (R)-α-lipoic acid synthesis via lipase catalyzed enantioselective transacylation with vinyl acetate. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 102-107.	1.8	10
115	Rapid probing of the reactivity of P450 monooxygenases from the CYP116B subfamily using a substrate-based method. New Journal of Chemistry, 2016, 40, 8928-8934.	2.8	10
116	Enhancing the Catalytic Performance of a CYP116B Monooxygenase by Transdomain Combination Mutagenesis. ChemCatChem, 2018, 10, 2962-2968.	3.7	10
117	Protein engineering for bioreduction of carboxylic acids. Journal of Biotechnology, 2019, 303, 53-64.	3.8	10
118	Enzymatic synthesis of 10-oxostearic acid in high space-time yield via cascade reaction of a new oleate hydratase and an alcohol dehydrogenase. Journal of Biotechnology, 2019, 306, 100008.	3.8	10
119	Structure-guided engineering of <i>Pseudomonas dacunhae</i> <scp>l</scp> -aspartate l²-decarboxylase for <scp>l</scp> -homophenylalanine synthesis. Chemical Communications, 2020, 56, 13876-13879.	4.1	10
120	Efficient Transformation of Linoleic Acid into 13(S)-Hydroxy-9,11-(Z,E)-octadecadienoic Acid Using Putative Lipoxygenases from Cyanobacteria. ACS Sustainable Chemistry and Engineering, 2020, 8, 5558-5565.	6.7	10
121	Comparison of differently modifiedPseudomonascepacialipases in enantioselective preparation of a chiral alcohol for agrochemical use. Biocatalysis and Biotransformation, 2005, 23, 415-422.	2.0	8
122	Efficient Biocatalytic Synthesis of Chiral Chemicals. Advances in Biochemical Engineering/Biotechnology, 2014, 155, 55-106.	1.1	8
123	Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding. Journal of Molecular Graphics and Modelling, 2015, 62, 319-324.	2.4	8
124	A green-by-design bioprocess for <scp>l</scp> -carnosine production integrating enzymatic synthesis with membrane separation. Catalysis Science and Technology, 2019, 9, 5971-5978.	4.1	8
125	Engineering of an oleate hydratase for efficient C10-Functionalization of oleic acid. Biochemical and Biophysical Research Communications, 2021, 537, 64-70.	2.1	8
126	Stepwise and combinatorial optimization of enantioselectivity for the asymmetric hydrolysis of 1-(3',4'-methylenedioxyphenyl)ethyl acetate under use of a cold-adapted Bacillus amyloliquefaciens esterase. Biotechnology and Bioprocess Engineering, 2014, 19, 442-448.	2.6	7

#	Article	IF	CITATIONS
127	Attenuated substrate inhibition of a haloketone reductase via structure-guided loop engineering. Journal of Biotechnology, 2020, 308, 141-147.	3.8	7
128	Engineering Bacillus subtilis Isoleucine Dioxygenase for Efficient Synthesis of (2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i>)-4-Hydroxyisoleucine. Journal of Agricultural and Food Chemistry, 2020, 68, 14555-14563.	5.2	7
129	Random and combinatorial mutagenesis for improved total production of secretory target protein in Escherichia coli. Scientific Reports, 2021, 11, 5290.	3.3	7
130	Improving the Oxygenation Performance of a Cyanobacterial Lipoxygenase by Oxygen Channel Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 12514-12519.	6.7	7
131	NADH-dependent lactate dehydrogenase from Alcaligenes eutrophus H16 reduces 2-oxoadipate to 2-hydroxyadipate. Biotechnology and Bioprocess Engineering, 2014, 19, 1048-1057.	2.6	6
132	Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester. Applied Biochemistry and Biotechnology, 2017, 183, 543-554.	2.9	6
133	Protein engineering of aldolase LbDERA for enhanced activity toward real substrates with a high-throughput screening method coupled with an aldehyde dehydrogenase. Biochemical and Biophysical Research Communications, 2017, 482, 159-163.	2.1	6
134	Structural investigation of the enantioselectivity and thermostability mechanisms of esterase RhEst1. Journal of Molecular Graphics and Modelling, 2018, 85, 182-189.	2.4	6
135	Reprogramming Epoxide Hydrolase to Improve Enantioconvergence in Hydrolysis of Styrene Oxide Scaffolds. Advanced Synthesis and Catalysis, 2020, 362, 4699-4706.	4.3	6
136	A Highâ€Throughput Screening Method for the Directed Evolution of Hydroxynitrile Lyase towards Cyanohydrin Synthesis. ChemBioChem, 2021, 22, 996-1000.	2.6	6
137	Discovery and Engineering of a Novel Baeyerâ€Villiger Monooxygenase with High Normal Regioselectivity. ChemBioChem, 2021, 22, 1190-1195.	2.6	6
138	Carving the Active Site of CYP153A7 Monooxygenase for Improving Terminal Hydroxylation of Medium hain Fatty Acids. ChemBioChem, 2022, , .	2.6	6
139	Enantioselective Esterification of Racemic Acid Catalyzed by Lipase in a Mixed Solvent Systema. Annals of the New York Academy of Sciences, 1998, 864, 405-408.	3.8	5
140	Separation of enantiopure m-substituted 1-phenylethanols in high space-time yield using Bacillus subtilis esterase. RSC Advances, 2013, 3, 20446.	3.6	5
141	A Single Mutation Increases the Activity and Stability of <i>Pectobacterium carotovorum</i> Nitrile Reductase. ChemBioChem, 2018, 19, 521-526.	2.6	5
142	Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase. Applied and Environmental Microbiology, 2019, 85, .	3.1	5
143	Protein engineering of thioether monooxygenase to improve its thermostability for enzymatic synthesis of chiral sulfoxide. Molecular Catalysis, 2021, 509, 111625.	2.0	5
144	Removing the Obstacle to (â^')â€Menthol Biosynthesis by Building a Microbial Cell Factory of (+)â€ <i>cis</i> â€Isopulegone from (â^')â€Limonene. ChemSusChem, 2022, 15, .	6.8	4

#	Article	IF	CITATIONS
145	Co-Cross-Linked Aggregates of Baeyer–Villiger Monooxygenases and Formate Dehydrogenase for Repeated Use in Asymmetric Biooxidation. Organic Process Research and Development, 2022, 26, 1978-1983.	2.7	4
146	Facile Production of (+)-Aristolochene and (+)-Bicyclogermacrene in <i>Escherichia coli</i> Using Newly Discovered Sesquiterpene Synthases from <i>Penicillium expansum</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 5860-5868.	5.2	4
147	Colorimetric Highâ€Throughput Screening Method for Directed Evolution of Prazole Sulfide Monooxygenase. ChemBioChem, 2022, 23, .	2.6	4
148	Modified ferric hydroxamate spectrophotometry for assaying glycolic acid from the hydrolysis of glycolonitrile by Rhodococcus sp. CCZU10-1. Biotechnology and Bioprocess Engineering, 2011, 16, 901-907.	2.6	3
149	Monoterpene hydroxylation with an artificial self-sufficient P450 utilizing a P450SMO reductase domain for the electron transfer. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 78-82.	1.8	3
150	High throughput solid-phase screening of bacteria with cyclic amino alcohol deamination activity for enantioselective synthesis of chiral cyclic β-amino alcohols. Biotechnology Letters, 2020, 42, 1501-1511.	2.2	3
151	Discovery and Engineering of Bacterial (â^')â€Isopiperitenol Dehydrogenases to Enhance (â^')â€Menthol Precursor Biosynthesis. Advanced Synthesis and Catalysis, 2021, 363, 3973-3982.	4.3	3
152	Secretory expression of cyclohexanone monooxygenase by methylotrophic yeast for efficient omeprazole sulfide bio-oxidation. Bioresources and Bioprocessing, 2021, 8, .	4.2	2
153	Environmentally Benign Bioprocesses for Energy and Chemicals Production. Applied Biochemistry and Biotechnology, 2009, 159, 589-590.	2.9	0
154	Enhancing the Catalytic Performance of a CYP116B Monooxygenase by Transdomain Combination Mutagenesis. ChemCatChem, 2018, 10, 2927-2927.	3.7	0