Tin Tin Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7247522/publications.pdf Version: 2024-02-01

TIN TIN SU

#	Article	IF	CITATIONS
1	Differential gene expression analysis identified determinants of cell fate plasticity during radiation-induced regeneration in Drosophila. PLoS Genetics, 2022, 18, e1009989.	3.5	3
2	Non-Apoptotic Role of Apoptotic Caspases in the Drosophila Nervous System. Frontiers in Cell and Developmental Biology, 2022, 10, 839358.	3.7	5
3	Inhibiting Translation Elongation with SVC112 Suppresses Cancer Stem Cells and Inhibits Growth in Head and Neck Squamous Carcinoma. Cancer Research, 2020, 80, 1183-1198.	0.9	12
4	Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms. PLoS Genetics, 2020, 16, e1009056.	3.5	5
5	Non-apoptotic roles of apoptotic proteases: new tricks for an old dog. Open Biology, 2020, 10, 200130.	3.6	21
6	Combined EGFR1 and PARP1 Inhibition Enhances the Effect of Radiation in Head and Neck Squamous Cell Carcinoma Models. Radiation Research, 2020, 194, 519-531.	1.5	8
7	Drug screening in <i>Drosophila</i> ; why, when, and when not?. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e346.	5.9	26
8	Regulators of cell movement during development and regeneration in Drosophila. Open Biology, 2019, 9, 180245.	3.6	11
9	What Drosophila Can Teach Us About Radiation Biology of Human Cancers. Advances in Experimental Medicine and Biology, 2019, 1167, 225-236.	1.6	1
10	Ionizing radiation induces stem cell-like properties in a caspase-dependent manner in Drosophila. PLoS Genetics, 2018, 14, e1007659.	3.5	23
11	Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biology, 2018, 8, 180157.	3.6	6
12	Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research. DMM Disease Models and Mechanisms, 2017, 10, 1381-1389.	2.4	12
13	STAT, Wingless, and Nurf-38 determine the accuracy of regeneration after radiation damage in Drosophila. PLoS Genetics, 2017, 13, e1007055.	3.5	20
14	Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation. PLoS Biology, 2016, 14, e1002536.	5.6	49
15	Bouvardin is a Radiation Modulator with a Novel Mechanism of Action. Radiation Research, 2015, 184, 392.	1.5	26
16	Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster. Nature Communications, 2015, 6, 7058.	12.8	52
17	Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genetics, 2015, 02, 054-069.	1.9	10
18	Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genetics, 2015, 2, 54-69.	1.9	9

Tin Tin Su

#	Article	IF	CITATIONS
19	The Role of Translational Regulation in Survival after Radiation Damage; an Opportunity for Proteomics Analysis. Proteomes, 2014, 2, 272-290.	3.5	9
20	Oncogenic mutations produce similar phenotypes in Drosophila tissues of diverse origins. Biology Open, 2014, 3, 201-209.	1.2	3
21	Dying Cells Protect Survivors from Radiation-Induced Cell Death in Drosophila. PLoS Genetics, 2014, 10, e1004220.	3.5	41
22	A translation inhibitor identified in a <i>Drosophila</i> screen enhances the effect of ionizing radiation and taxol in mammalian models of cancer. DMM Disease Models and Mechanisms, 2012, 5, 342-50.	2.4	31
23	Radiation Responses and Resistance. International Review of Cell and Molecular Biology, 2012, 299, 235-253.	3.2	12
24	Genome-Wide Expression Analysis Identifies a Modulator of Ionizing Radiation-Induced p53-Independent Apoptosis in Drosophila melanogaster. PLoS ONE, 2012, 7, e36539.	2.5	25
25	Chemical genetics and drug screening in Drosophila cancer models. Journal of Genetics and Genomics, 2011, 38, 497-504.	3.9	61
26	Safeguarding genetic information in Drosophila. Chromosoma, 2011, 120, 547-555.	2.2	6
27	Combinatorial effect of maytansinol and radiation in <i>Drosophila</i> and human cancer cells. DMM Disease Models and Mechanisms, 2011, 4, 496-503.	2.4	36
28	Screening for Radiation Sensitizers of Drosophila Checkpoint Mutants. Methods in Molecular Biology, 2011, 782, 105-117.	0.9	7
29	Heterochromatin Replication: Better Late Than Ever. Current Biology, 2010, 20, R1018-R1020.	3.9	3
30	The Effect of a DNA Damaging Agent on Embryonic Cell Cycles of the Cnidarian Hydractinia echinata. PLoS ONE, 2010, 5, e11760.	2.5	4
31	E2F1 and E2F2 have opposite effects on radiation-induced p53-independent apoptosis in Drosophila. Developmental Biology, 2010, 346, 80-89.	2.0	29
32	Tyrosines in the Kinesin-5 Head Domain Are Necessary for Phosphorylation by Wee1 and for Mitotic Spindle Integrity. Current Biology, 2009, 19, 1670-1676.	3.9	28
33	Regulation of Drosophila melanogaster pro-apoptotic gene hid. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 943-949.	4.9	29
34	A longâ€ŧerm flow cytometry assay to analyze the role of specific genes of <i>Drosophila melanogaster</i> S2 cells in surviving genotoxic stress. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 637-642.	1.5	2
35	Modulation of ionizing radiation-induced apoptosis by bantam microRNA in Drosophila. Developmental Biology, 2008, 320, 122-130.	2.0	24
36	Drosophila ATR in Double-Strand Break Repair. Genetics, 2007, 175, 1023-1033.	2.9	57

τιν τιν Su

#	Article	IF	CITATIONS
37	Analysis of the cell division cycle in Drosophila. Methods, 2007, 41, 198-205.	3.8	8
38	Cellular Responses to DNA Damage: One Signal, Multiple Choices. Annual Review of Genetics, 2006, 40, 187-208.	7.6	194
39	Contribution of Growth and Cell Cycle Checkpoints to Radiation Survival in Drosophila. Genetics, 2006, 174, 1963-1972.	2.9	34
40	lonizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9952-9957.	7.1	84
41	Drosophila Wee1 Interacts with Members of the \hat{I}^3 TURC and Is Required for Proper Mitotic-Spindle Morphogenesis and Positioning. Current Biology, 2005, 15, 1525-1534.	3.9	32
42	Grp/DChk1 is required for G2-M checkpoint activation in Drosophila S2 cells, whereas Dmnk/DChk2 is dispensable. Journal of Cell Science, 2005, 118, 1833-1842.	2.0	36
43	Regulation of mitosis in response to damaged or incompletely replicated DNA require different levels of Grapes (Drosophila Chk1). Journal of Cell Science, 2005, 118, 3305-3315.	2.0	18
44	Embryonic Cleavage Cycles: How Is a Mouse Like a Fly?. Current Biology, 2004, 14, R35-R45.	3.9	171
45	Relative Contribution of DNA Repair, Cell Cycle Checkpoints, and Cell Death to Survival after DNA Damage in Drosophila Larvae. Current Biology, 2004, 14, 23-32.	3.9	95
46	Embryogenesis: Coordinating Cell Division with Gastrulation. Current Biology, 2004, 14, R305-R307.	3.9	29
47	Telomeres: Not All Breaks Are Equal. Current Biology, 2004, 14, R613-R614.	3.9	13
48	Drosophila Wee1 Kinase Regulates Cdk1 and Mitotic Entry during Embryogenesis. Current Biology, 2004, 14, 2143-2148.	3.9	70
49	Promiscuity Rules? The Dispensability of Cyclin E and Cdk2. Science Signaling, 2004, 2004, pe11-pe11.	3.6	17
50	Characterization of DIP1, a novel nuclear protein in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2003, 307, 224-228.	2.1	4
51	Phenotypic Analysis of Separation-of-Function Alleles of MEI-41, Drosophila ATM/ATR. Genetics, 2003, 164, 589-601.	2.9	71
52	Cycling through development in Drosophila and other metazoa. Nature Cell Biology, 2001, 3, E35-E39.	10.3	39
53	Cell cycle: How, when and why cells get rid of cyclin A. Current Biology, 2001, 11, R467-R469.	3.9	15
54	mei-41 and bub1 block mitosis at two distinct steps in response to incomplete DNA replication in Drosophila embryos. Current Biology, 2001, 11, 1595-1599.	3.9	34

τιν τιν Su

#	Article	IF	CITATIONS
55	DNA damage leads to a Cyclin A–dependent delay in metaphase-anaphase transition in the Drosophila gastrula. Current Biology, 2001, 11, 8-17.	3.9	40
56	Cell cycle roles for two 14-3-3 proteins during <i>Drosophila</i> development. Journal of Cell Science, 2001, 114, 3445-3454.	2.0	56
57	DNA defects target the centrosome. Nature Cell Biology, 2000, 2, E28-E29.	10.3	6
58	Activating the DNA damage checkpoint in a developmental context. Current Biology, 2000, 10, 119-126.	3.9	25
59	Drosophila grapes/CHK1 mutants are defective in cyclin proteolysis and coordination of mitotic events. Current Biology, 1999, 9, 919-S1.	3.9	44
60	The Cell Cycle Program in Germ Cells of theDrosophilaEmbryo. Developmental Biology, 1998, 196, 160-170.	2.0	72
61	Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Endoreplication Cycles. Journal of Cell Biology, 1998, 140, 451-460.	5.2	59
62	Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Mitotic Cycles. Journal of Cell Biology, 1997, 139, 13-21.	5.2	50
63	Cloning of Drosophila MCM homologs and analysis of their requirement during embryogenesis. Gene, 1997, 192, 283-289.	2.2	21
64	Qualifying for the license to replicate. Cell, 1995, 81, 825-828.	28.9	57