
Pilar M Ortigosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/724743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competitive Location: New Models and Methods and Future Trends. International Journal of Economics and Statistics, 2022, 10, 95-102.	0.1	Ο
2	On the limits of Conditional Generative Adversarial Neural Networks to reconstruct the identification of inhabitants from IoT low-resolution thermal sensors. Expert Systems With Applications, 2022, 203, 117356.	7.6	4
3	DOLARS, a Distributed On-Line Activity Recognition System by Means of Heterogeneous Sensors in Real-Life Deployments—A Case Study in the Smart Lab of The University of AlmerÃa. Sensors, 2021, 21, 405.	3.8	12
4	A Comparative Study of Stochastic Optimizers for Fitting Neuron Models. Application to the Cerebellar Granule Cell. Informatica, 2021, , 477-498.	2.7	4
5	MultiPharm-DT: A Multi-Objective Decision Tool for Ligand-Based Virtual Screening Problems. Informatica, 2021, , 1-26.	2.7	0
6	Improving the performance of a preference-based multi-objective algorithm to optimize food treatment processes. Engineering Optimization, 2020, 52, 896-913.	2.6	3
7	Is high performance computing a requirement for novel drug discovery and how will this impact academic efforts?. Expert Opinion on Drug Discovery, 2020, 15, 981-985.	5.0	17
8	A Simple and Effective Heuristic Control System for the Heliostat Field of Solar Power Tower Plants. Acta Polytechnica Hungarica, 2020, 17, 7-26.	2.9	6
9	Optimizing Electrostatic Similarity for Virtual Screening: A New Methodology. Informatica, 2020, , 1-19.	2.7	3
10	The probabilistic customer's choice rule with a threshold attraction value: Effect on the location of competitive facilities in the plane. Computers and Operations Research, 2019, 101, 234-249.	4.0	24
11	Design of a parallel genetic algorithm for continuous and pattern-free heliostat field optimization. Journal of Supercomputing, 2019, 75, 1268-1283.	3.6	9
12	Multi-objective evolutionary algorithm for evaluation of shape and electrostatic similarity. AIP Conference Proceedings, 2019, , .	0.4	1
13	Preference-based multi-objectivization applied to decision support for High-Pressure Thermal processes in food treatment. Applied Soft Computing Journal, 2019, 79, 326-340.	7.2	12
14	Predicting the spread of epidemiological diseases by using a multi-objective algorithm. AIP Conference Proceedings, 2019, , .	0.4	0
15	OptiPharm: An evolutionary algorithm to compare shape similarity. Scientific Reports, 2019, 9, 1398.	3.3	13
16	A lightweight heliostat field post-optimizer. AIP Conference Proceedings, 2019, , .	0.4	0
17	Control and optimal management of a heliostat field for solar power tower systems. , 2019, , .		2
18	High-performance computing for the optimization of high-pressure thermal treatments in food industry. Journal of Supercomputing, 2019, 75, 1187-1202.	3.6	8

PILAR M ORTIGOSA

#	Article	IF	CITATIONS
19	Modelling and optimization applied to the design of fast hydrodynamic focusing microfluidic mixer for protein folding. Journal of Mathematics in Industry, 2018, 8, .	1.2	5
20	A two-layered solution for automatic heliostat aiming. Engineering Applications of Artificial Intelligence, 2018, 72, 253-266.	8.1	14
21	On building-up a yearly characterization of a heliostat field: A new methodology and an application example. Solar Energy, 2018, 173, 578-589.	6.1	7
22	Hector, a new methodology for continuous and pattern-free heliostat field optimization. Applied Energy, 2018, 225, 1123-1131.	10.1	16
23	Optimizing the Heliostat Field Layout by Applying Stochastic Population-Based Algorithms. Informatica, 2018, 29, 21-39.	2.7	7
24	High performance computing for the heliostat field layout evaluation. Journal of Supercomputing, 2017, 73, 259-276.	3.6	15
25	Review of software for optical analyzing and optimizing heliostat fields. Renewable and Sustainable Energy Reviews, 2017, 72, 1001-1018.	16.4	51
26	A parallel Teaching–Learning-Based Optimization procedure for automatic heliostat aiming. Journal of Supercomputing, 2017, 73, 591-606.	3.6	21
27	A planar single-facility competitive location and design problem under the multi-deterministic choice rule. Computers and Operations Research, 2017, 78, 305-315.	4.0	23
28	FEMOEA: a fast and efficient multi-objective evolutionary algorithm. Mathematical Methods of Operations Research, 2017, 85, 113-135.	1.0	7
29	Modeling and Optimization Applied to the Design of Fast Hydrodynamic Focusing Microfluidic Mixer for Protein Folding. Mathematics in Industry, 2017, , 649-655.	0.3	0
30	A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization. Energies, 2017, 10, 730.	3.1	4
31	Huff-Like Stackelberg Location Problems on the Plane. Springer Optimization and Its Applications, 2017, , 129-169.	0.9	1
32	A parallelized Lagrangean relaxation approach for the discrete ordered median problem. Annals of Operations Research, 2016, 246, 253-272.	4.1	7
33	A Triobjective Model for Locating a Public Semiobnoxious Facility in the Plane. Mathematical Problems in Engineering, 2015, 2015, 1-12.	1.1	3
34	On heuristic bi-criterion methods for semi-obnoxious facility location. Computational Optimization and Applications, 2015, 61, 205-217.	1.6	4
35	An efficient approach for solving the HP protein folding problem based on UEGO. Journal of Mathematical Chemistry, 2015, 53, 794-806.	1.5	8
36	PARALLEL OPTIMIZATION ALGORITHM FOR COMPETITIVE FACILITY LOCATION. Mathematical Modelling and Analysis, 2015, 20, 619-640.	1.5	7

PILAR M ORTIGOSA

#	Article	IF	CITATIONS
37	Parallelization of a non-linear multi-objective optimization algorithm: Application to a location problem. Applied Mathematics and Computation, 2015, 255, 114-124.	2.2	9
38	Approximating the Pareto-front of a planar bi-objective competitive facility location and design problem. Computers and Operations Research, 2015, 62, 337-349.	4.0	32
39	Parallel Shared-Memory Multi-Objective Stochastic Search for Competitive Facility Location. Lecture Notes in Computer Science, 2014, , 71-82.	1.3	1
40	An approach for solving competitive location problems with variable demand using multicore systems. Optimization Letters, 2014, 8, 555-567.	1.6	10
41	Solving a leader–follower facility problem via parallel evolutionary approaches. Journal of Supercomputing, 2014, 70, 600-611.	3.6	9
42	A GPU implementation of a hybrid evolutionary algorithm: GPuEGO. Journal of Supercomputing, 2014, 70, 684-695.	3.6	5
43	A two-level evolutionary algorithm for solving the facility location and design (1 1)-centroid problem on the plane with variable demand. Journal of Global Optimization, 2013, 56, 983-1005.	1.8	27
44	Solving a Continuous (1 I 1)-Centroid Problem with Endogenous Demand: High Performance Approaches. , 2013, , .		1
45	Optimizing building comfort temperature regulation via model predictive control. Energy and Buildings, 2013, 57, 361-372.	6.7	101
46	Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding. Physics of Fluids, 2013, 25, 032001.	4.0	21
47	Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Analysis: Modelling and Control, 2013, 18, 293-313.	1.6	9
48	Fixed or variable demand? Does it matter when locating a facility?. Omega, 2012, 40, 9-20.	5.9	33
49	Approximating the Pareto-front of Continuous Bi-objective Problems: Application to a Competitive Facility Location Problem. Advances in Intelligent Systems and Computing, 2012, , 207-216.	0.6	1
50	Local optimization in global Multi-Objective Optimization Algorithms. , 2011, , .		3
51	Parallel algorithms for continuous multifacility competitive location problems. Journal of Global Optimization, 2011, 50, 557-573.	1.8	14
52	Parallel evolutionary algorithms based on shared memory programming approaches. Journal of Supercomputing, 2011, 58, 270-279.	3.6	5
53	Solving the facility location and design (1â^£1)-centroid problem via parallel algorithms. Journal of Supercomputing, 2011, 58, 420-428.	3.6	8
54	Finding multiple global optima for unconstrained discrete location problems. Optimization Methods and Software, 2011, 26, 207-224.	2.4	4

PILAR M ORTIGOSA

#	Article	IF	CITATIONS
55	Heuristics for the facility location and design (1 1)-centroid problem on the plane. Computational Optimization and Applications, 2010, 45, 111-141.	1.6	40
56	Investigation of parallel particle swarm optimization algorithm with reduction of the search area. , 2010, , .		3
57	Solving the Multiple Competitive Facilities Location and Design Problem on the Plane. Evolutionary Computation, 2009, 17, 21-53.	3.0	44
58	A robust and efficient algorithm for planar competitive location problems. Annals of Operations Research, 2009, 167, 87-105.	4.1	23
59	Sensitivity analysis of a continuous multifacility competitive location and design problem. Top, 2009, 17, 347-365.	1.6	12
60	Universal Global Optimization Algorithm on Shared Memory Multiprocessors. Lecture Notes in Computer Science, 2009, , 219-222.	1.3	1
61	Parallel algorithms for continuous competitive location problems. Optimization Methods and Software, 2008, 23, 779-791.	2.4	16
62	A population global optimization algorithm to solve the image alignment problem in electron crystallography. Journal of Global Optimization, 2007, 37, 527-539.	1.8	8
63	GASUB: finding global optima to discrete location problems by a genetic-like algorithm. Journal of Global Optimization, 2007, 38, 249-264.	1.8	18
64	Hardware description of multi-layer perceptrons with different abstraction levels. Microprocessors and Microsystems, 2006, 30, 435-444.	2.8	57
65	FPGA Implementation of a Fully and Partially Connected MLP. , 2006, , 271-296.		4
66	Reliability and Performance of UEGO, a Clustering-based Global Optimizer. Journal of Global Optimization, 2001, 19, 265-289.	1.8	35
67	UEGO, an Abstract Clustering Technique for Multimodal Global Optimization. Journal of Heuristics, 2001, 7, 215-233.	1.4	26
68	On success rates for controlled random search. Journal of Global Optimization, 2001, 21, 239-263.	1.8	30
69	Deformable shapes detection by stochastic optimization. , 0, , .		5
70	A global optimization approach to image translational alignment in electron microscopy. , 0, , .		2