
Sarah Perrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7246418/publications.pdf Version: 2024-02-01

SADAH DEDDETT

#	Article	IF	CITATIONS
1	PES derivative PESA is a potent tool to globally profile cellular targets of PES. Bioorganic and Medicinal Chemistry Letters, 2022, 60, 128553.	1.0	0
2	Distinct lipid membrane-mediated pathways of Tau assembly revealed by single-molecule analysis. Nanoscale, 2022, 14, 4604-4613.	2.8	12
3	Hsp70 in Redox Homeostasis. Cells, 2022, 11, 829.	1.8	36
4	Mutational analysis of the Hsp70 substrateâ€binding domain: Correlating molecularâ€level changes with in vivo function. Molecular Microbiology, 2021, 115, 1262-1276.	1.2	1
5	PES inhibits human-inducible Hsp70 by covalent targeting of cysteine residues in the substrate-binding domain. Journal of Biological Chemistry, 2021, 296, 100210.	1.6	10
6	Structural basis for the DNA-binding activity of human ARID4B Tudor domain. Journal of Biological Chemistry, 2021, 296, 100506.	1.6	8
7	Single Molecule Characterization of Amyloid Oligomers. Molecules, 2021, 26, 948.	1.7	10
8	Studying protein folding in health and disease using biophysical approaches. Emerging Topics in Life Sciences, 2021, 5, 29-38.	1.1	4
9	Conformational Expansion of Tau in Condensates Promotes Irreversible Aggregation. Journal of the American Chemical Society, 2021, 143, 13056-13064.	6.6	78
10	Structural Insight into Chromatin Recognition by Multiple Domains of the Tumor Suppressor RBBP1. Journal of Molecular Biology, 2021, 433, 167224.	2.0	4
11	Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules. Science Advances, 2020, 6, .	4.7	16
12	Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672.	2.8	13
13	Kinetic diversity of amyloid oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12087-12094.	3.3	103
14	Distinct microscopic mechanisms for the accelerated aggregation of pathogenic Tau mutants revealed by kinetic analysis. Physical Chemistry Chemical Physics, 2020, 22, 7241-7249.	1.3	9
15	Kinetics of the conformational cycle of Hsp70 reveals the importance of the dynamic and heterogeneous nature of Hsp70 for its function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7814-7823.	3.3	27
16	S-Glutathionylation of human inducible Hsp70 reveals a regulatory mechanism involving the C-terminal α-helical lid. Journal of Biological Chemistry, 2020, 295, 8302-8324.	1.6	22
17	Rapid deacetylation of yeast Hsp70 mediates the cellular response to heat stress. Scientific Reports, 2019, 9, 16260.	1.6	15
18	Resonance assignments for the tandem PWWP-ARID domains of human RBBP1. Biomolecular NMR Assignments, 2019, 13, 177-181.	0.4	2

#	Article	IF	CITATIONS
19	Protein Microgels from Amyloid Fibril Networks. Advances in Experimental Medicine and Biology, 2019, 1174, 223-263.	0.8	10
20	Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. Journal of the American Chemical Society, 2018, 140, 2493-2503.	6.6	44
21	The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation. Cellular and Molecular Life Sciences, 2018, 75, 1445-1459.	2.4	7
22	The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. Journal of Biological Chemistry, 2018, 293, 17663-17675.	1.6	24
23	The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion, 2018, 12, 170-174.	0.9	5
24	The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor. Scientific Reports, 2017, 7, 42867.	1.6	22
25	A co-expression strategy to achieve labeling of individual subunits within a dimeric protein for single molecule analysis. Chemical Communications, 2017, 53, 7986-7989.	2.2	4
26	Selective Proteomic Proximity Labeling Assay Using Tyramide (SPPLAT): A Quantitative Method for the Proteomic Analysis of Localized Membraneâ€Bound Protein Clusters. Current Protocols in Protein Science, 2017, 88, 19.27.1-19.27.18.	2.8	19
27	The C-terminal region of human eukaryotic elongation factor 1Bδ. Journal of Biomolecular NMR, 2016, 64, 181-187.	1.6	5
28	Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. Journal of Biological Chemistry, 2016, 291, 6967-6981.	1.6	37
29	Selective Proteomic Proximity Labeling Assay Using Tyramide (SPPLAT): A Quantitative Method for the Proteomic Analysis of Localized Membraneâ€Bound Protein Clusters. Current Protocols in Protein Science, 2015, 80, 19.27.1-19.27.18.	2.8	57
30	Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS Nano, 2015, 9, 5772-5781.	7.3	43
31	Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae. Biomolecular NMR Assignments, 2015, 9, 329-332.	0.4	2
32	Evolutionarily Conserved Binding of Translationally Controlled Tumor Protein to Eukaryotic Elongation Factor 1B. Journal of Biological Chemistry, 2015, 290, 8694-8710.	1.6	25
33	Protein Neighbors and Proximity Proteomics. Molecular and Cellular Proteomics, 2015, 14, 2848-2856.	2.5	105
34	China: International Biochemistry. Biochemist, 2015, 37, 29-30.	0.2	0
35	New Insights into the DT40 B Cell Receptor Cluster Using a Proteomic Proximity Labeling Assay. Journal of Biological Chemistry, 2014, 289, 14434-14447.	1.6	110
36	Selfâ€Assembly of Amyloid Fibrils That Display Active Enzymes. ChemCatChem, 2014, 6, 1961-1968.	1.8	34

#	Article	IF	CITATIONS
37	Retinoblastoma-binding Protein 1 Has an Interdigitated Double Tudor Domain with DNA Binding Activity. Journal of Biological Chemistry, 2014, 289, 4882-4895.	1.6	21
38	Anti-apoptosis Proteins Mcl-1 and Bcl-xL Have Different p53-Binding Profiles. Biochemistry, 2013, 52, 6324-6334.	1.2	24
39	Probing the Function of the Tyr ys Cross‣ink in Metalloenzymes by the Genetic Incorporation of 3â€Methylthiotyrosine. Angewandte Chemie - International Edition, 2013, 52, 1203-1207.	7.2	42
40	Complex Energy Landscape of a Giant Repeat Protein. Structure, 2013, 21, 1954-1965.	1.6	33
41	Understanding the Particokinetics of Engineered Nanomaterials for Safe and Effective Therapeutic Applications. Small, 2013, 9, 1619-1634.	5.2	39
42	Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110410.	1.8	33
43	Mutational Analysis of Sse1 (Hsp110) Suggests an Integral Role for this Chaperone in Yeast Prion Propagation <i>In Vivo</i> . G3: Genes, Genomes, Genetics, 2013, 3, 1409-1418.	0.8	13
44	Using Steered Molecular Dynamics to Predict and Assess Hsp70 Substrate-Binding Domain Mutants that Alter Prion Propagation. PLoS Computational Biology, 2013, 9, e1002896.	1.5	24
45	CDK-Dependent Hsp70 Phosphorylation Controls G1 Cyclin Abundance and Cell-Cycle Progression. Cell, 2012, 151, 1308-1318.	13.5	122
46	Structural Insight into Recognition of Methylated Histone Tails by Retinoblastoma-binding Protein 1. Journal of Biological Chemistry, 2012, 287, 8531-8540.	1.6	31
47	Exploiting amyloid: how and why bacteria use cross-Î ² fibrils. Biochemical Society Transactions, 2012, 40, 728-734.	1.6	33
48	The fibrils of Ure2p homologs from Saccharomyces cerevisiae and Saccharoymyces paradoxus have similar cross-1² structure in both dried and hydrated forms. Journal of Structural Biology, 2011, 174, 505-511.	1.3	7
49	Studying the effects of chaperones on amyloid fibril formation. Methods, 2011, 53, 285-294.	1.9	29
50	The yeast prion protein Ure2: insights into the mechanism of amyloid formation. Biochemical Society Transactions, 2011, 39, 1359-1364.	1.6	1
51	Flexibility of the Ure2 prion domain is important for amyloid fibril formation. Biochemical Journal, 2011, 434, 143-151.	1.7	7
52	Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 5860-5864.	7.2	210
53	Deletion of a Ure2 C-terminal prion-inhibiting region promotes the rate of fibril seed formation and alters interaction with Hsp40. Protein Engineering, Design and Selection, 2011, 24, 69-78.	1.0	9
54	Relationship between Prion Propensity and the Rates of Individual Molecular Steps of Fibril Assembly. Journal of Biological Chemistry, 2011, 286, 12101-12107.	1.6	27

#	Article	IF	CITATIONS
55	The many faces of amyloid: Protein misfolding: failure or function?. Biochemist, 2011, 33, 6-9.	0.2	Ο
56	New insights into the molecular mechanism of amyloid formation from cysteine scanning. Prion, 2010, 4, 9-12.	0.9	4
57	Amyloid-Like Aggregates of the Yeast Prion Protein Ure2 Enter Vertebrate Cells by Specific Endocytotic Pathways and Induce Apoptosis. PLoS ONE, 2010, 5, e12529.	1.1	18
58	Novel Glutaredoxin Activity of the Yeast Prion Protein Ure2 Reveals a Native-like Dimer within Fibrils. Journal of Biological Chemistry, 2009, 284, 14058-14067.	1.6	39
59	Disulfide Bond Formation Significantly Accelerates the Assembly of Ure2p Fibrils because of the Proximity of a Potential Amyloid Stretch. Journal of Biological Chemistry, 2009, 284, 11134-11141.	1.6	24
60	Alcohol oxidase (AOX1) from <i>Pichia pastoris</i> is a novel inhibitor of prion propagation and a potential ATPase. Molecular Microbiology, 2009, 71, 702-716.	1.2	20
61	Effect of Nanoparticles on Protein Folding and Fibrillogenesis. International Journal of Molecular Sciences, 2009, 10, 646-655.	1.8	170
62	Characterization of the activity and folding of the glutathione transferase from <i>Escherichia coli</i> and the roles of residues Cys10 and His106. Biochemical Journal, 2009, 417, 55-64.	1.7	14
63	"Restoration―of Glutathione Transferase Activity By Single-site Mutation of The Yeast Prion Protein Ure2. Journal of Molecular Biology, 2008, 384, 641-651.	2.0	34
64	Insights into the mechanism of prion propagation. Current Opinion in Structural Biology, 2008, 18, 52-59.	2.6	39
65	In Vitro Analysis of SpUre2p, a Prion-related Protein, Exemplifies the Relationship between Amyloid and Prion*. Journal of Biological Chemistry, 2007, 282, 7912-7920.	1.6	14
66	Characterisation of the fibrinogenolytic properties of the buccal gland secretion from Lampetra japonica. Biochimie, 2007, 89, 383-392.	1.3	37
67	Hsp40 Interacts Directly with the Native State of the Yeast Prion Protein Ure2 and Inhibits Formation of Amyloid-like Fibrils. Journal of Biological Chemistry, 2007, 282, 11931-11940.	1.6	59
68	(NZ)CHO Contacts assist crystallization of a ParB-like nuclease. BMC Structural Biology, 2007, 7, 46.	2.3	17
69	Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2, 577-583.	15.6	5,080
70	Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neuroscience, 2007, 8, 9.	0.8	67
71	Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor. Protein Science, 2007, 16, 1165-1175.	3.1	15
72	Effect ofÂC-terminal truncation onÂtheÂmolecular chaperone function andÂdimerization ofÂEscherichiaÂcoli trigger factor. Biochimie, 2006, 88, 613-619.	1.3	21

#	Article	IF	CITATIONS
73	The yeast prion protein Ure2: Structure, function and folding. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 535-545.	1.1	32
74	Dimeric Trigger Factor Stably Binds Folding-competent Intermediates and Cooperates with the DnaK-DnaJ-GrpE Chaperone System to Allow Refolding. Journal of Biological Chemistry, 2005, 280, 13315-13320.	1.6	41
75	Two distinct intermediates of trigger factor are populated during guanidine denaturation. Biochimie, 2005, 87, 1023-1031.	1.3	42
76	The Yeast Prion Protein Ure2 Shows Glutathione Peroxidase Activity in Both Native and Fibrillar Forms. Journal of Biological Chemistry, 2004, 279, 50025-50030.	1.6	99
77	Amyloid Nucleation and Hierarchical Assembly of Ure2p Fibrils. Journal of Biological Chemistry, 2004, 279, 3361-3369.	1.6	54
78	Small angle X-ray scattering study of the yeast prion Ure2p. Biochemical and Biophysical Research Communications, 2003, 311, 525-532.	1.0	8
79	Relationship Between Stability of Folding Intermediates and Amyloid Formation for the Yeast Prion Ure2p: A Quantitative Analysis of the Effects of pH and Buffer System. Journal of Molecular Biology, 2003, 328, 235-254.	2.0	84
80	Folding of the yeast prion protein Ure2: kinetic evidence for folding and unfolding intermediates 1 1Edited by J. Karn. Journal of Molecular Biology, 2002, 315, 213-227.	2.0	38
81	Expanding the pressure technique: insights into protein folding from combined use of pressure and chemical denaturants. BBA - Proteins and Proteomics, 2002, 1595, 210-223.	2.1	32
82	Relationship between Kinetic and Equilibrium Folding Intermediates of Creatine Kinase. Biochemical and Biophysical Research Communications, 2001, 285, 857-862.	1.0	12
83	Pressure Denaturation of the Yeast Prion Protein Ure2. Biochemical and Biophysical Research Communications, 2001, 287, 147-152.	1.0	39
84	Conformational adjustments of SNase R and its N-terminal fragments probed by monoclonal antibodies. BBA - Proteins and Proteomics, 2001, 1548, 203-212.	2.1	0
85	Equilibrium folding properties of the yeast prion protein determinant Ure2 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 290, 331-345.	2.0	83
86	Importance of electrostatic interactions in the rapid binding of polypeptides to GroEL 1 1Edited by J. Karn. Journal of Molecular Biology, 1997, 269, 892-901.	2.0	55
87	Conformational States Bound by the Molecular Chaperones GroEL and SecB: A Hidden Unfolding (Annealing) Activity. Journal of Molecular Biology, 1996, 261, 43-61.	2.0	100
88	Catalysis of Amide Proton Exchange by the Molecular Chaperones GroEL and SecB. Science, 1996, 271, 642-645.	6.0	157
89	Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proceedings of the United States of America, 1996, 93, 15024-15029.	3.3	137