
Anne Mai-Prochnow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7246331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends in Food Science and Technology, 2022, 120, 59-74.	15.1	24
2	The antimicrobial efficacy of plasma-activated water against Listeria and E. coli is modulated by reactor design and water composition. Journal of Applied Microbiology, 2022, 132, 2490-2500.	3.1	20
3	Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends in Food Science and Technology, 2022, 124, 323-333.	15.1	15
4	Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chemical Engineering Journal, 2021, 403, 126413.	12.7	79
5	Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants. Science of the Total Environment, 2021, 750, 142295.	8.0	62
6	Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: Performance, degradation pathways and toxicity evaluation. Chemical Engineering Journal, 2021, 421, 127730.	12.7	42
7	Microbial decontamination of chicken using atmospheric plasma bubbles. Plasma Processes and Polymers, 2021, 18, .	3.0	22
8	Sustainable plasma-catalytic bubbles for hydrogen peroxide synthesis. Green Chemistry, 2021, 23, 2977-2985.	9.0	42
9	Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. Npj Biofilms and Microbiomes, 2021, 7, 11.	6.4	88
10	Cold plasma to control biofilms on food and in the food-processing environment. , 2020, , 109-143.		4
11	Plasma-activated water: generation, origin of reactive species and biological applications. Journal Physics D: Applied Physics, 2020, 53, 303001.	2.8	314
12	Surface plasma discharges for the preservation of fresh-cut apples: microbial inactivation and quality attributes. Journal Physics D: Applied Physics, 2020, 53, 174003.	2.8	13
13	Designing Hydrogel-Modified Cellulose Triacetate Membranes with High Flux and Solute Selectivity for Forward Osmosis. Industrial & Engineering Chemistry Research, 2020, 59, 20845-20853.	3.7	8
14	Cold plasma treatment for cotton seed germination improvement. Scientific Reports, 2018, 8, 14372.	3.3	82
15	Cold plasma effect on the proteome of Pseudomonas aeruginosa – Role for bacterioferritin. PLoS ONE, 2018, 13, e0206530.	2.5	6
16	Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance. Journal of Membrane Science, 2018, 564, 382-393.	8.2	43
17	Atmospheric air plasma induces increased cell aggregation during the formation of <i>Escherichia coli</i> biofilms. Plasma Processes and Polymers, 2018, 15, 1700212.	3.0	3
18	Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 2016, 6, 38610.	3.3	435

#	Article	IF	CITATIONS
19	Novel biomaterials: plasma-enabled nanostructures and functions. Journal Physics D: Applied Physics, 2016, 49, 273001.	2.8	15
20	Protein retention on plasma-treated hierarchical nanoscale gold-silver platform. Scientific Reports, 2015, 5, 13379.	3.3	10
21	Draft Genome Sequence of Pseudomonas aeruginosa ATCC 9027 (DSM 1128), an Important Rhamnolipid Surfactant Producer and Sterility Testing Strain. Genome Announcements, 2015, 3, .	0.8	22
22	Hybrid Carbon-Based Nanostructured Platforms for the Advanced Bioreactors. Journal of Nanoscience and Nanotechnology, 2015, 15, 10074-10090.	0.9	2
23	†Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiology Reviews, 2015, 39, 465-487.	8.6	140
24	Plasma treatment for next-generation nanobiointerfaces. Biointerphases, 2015, 10, 029405.	1.6	9
25	The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Advances, 2015, 5, 5142-5148.	3.6	37
26	Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine. PLoS ONE, 2015, 10, e0130373.	2.5	61
27	Environmental cues and genes involved in establishment of the superinfective Pf4 phage of Pseudomonas aeruginosa. Frontiers in Microbiology, 2014, 5, 654.	3.5	28
28	Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents, 2014, 43, 508-517.	2.5	208
29	Hybrid graphite film–carbon nanotube platform for enzyme immobilization and protection. Carbon, 2013, 65, 287-295.	10.3	25
30	Hydrogen Peroxide Linked to Lysine Oxidase Activity Facilitates Biofilm Differentiation and Dispersal in Several Gram-Negative Bacteria. Journal of Bacteriology, 2008, 190, 5493-5501.	2.2	119
31	Analysis of the Pseudoalteromonas tunicata Genome Reveals Properties of a Surface-Associated Life Style in the Marine Environment. PLoS ONE, 2008, 3, e3252.	2.5	126
32	Ecological Advantages of Autolysis during the Development and Dispersal of Pseudoalteromonas tunicata Biofilms. Applied and Environmental Microbiology, 2006, 72, 5414-5420.	3.1	77
33	Biofilm Development and Cell Death in the Marine Bacterium Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 2004, 70, 3232-3238.	3.1	120