Armin Curt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7246302/publications.pdf Version: 2024-02-01

ADMIN CHDT

#	Article	IF	CITATIONS
1	Descending pain modulatory efficiency in healthy subjects is related to structure and resting connectivity of brain regions. Neurolmage, 2022, 247, 118742.	2.1	9
2	Clinical outcome measures and their evidence base in degenerative cervical myelopathy: a systematic review to inform a core measurement set (AO Spine RECODE-DCM). BMJ Open, 2022, 12, e057650.	0.8	22
3	Extent of Cord Pathology in the Lumbosacral Enlargement in Non-Traumatic versus Traumatic Spinal Cord Injury. Journal of Neurotrauma, 2022, 39, 639-650.	1.7	12
4	Cold evoked potentials elicited by rapid cooling of the skin in young and elderly healthy individuals. Scientific Reports, 2022, 12, 4137.	1.6	2
5	Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurology, The, 2022, 21, 659-670.	4.9	83
6	Optimizing clinical trial design using prospective cohort study data: a case study in neuro-urology. Spinal Cord, 2021, 59, 1003-1012.	0.9	1
7	Feedback improves compliance of pressure relief activities in wheelchair users with spinal cord injury. Spinal Cord, 2021, 59, 175-184.	0.9	13
8	Predictive Value of Midsagittal Tissue Bridges on Functional Recovery After Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2021, 35, 33-43.	1.4	20
9	Single-trial averaging improves the physiological interpretation of contact heat evoked potentials. NeuroImage, 2021, 225, 117473.	2.1	5
10	Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density. Frontiers in Neurology, 2021, 12, 598336.	1.1	3
11	Assessment of neuropathic pain after spinal cord injury using quantitative pain drawings. Spinal Cord, 2021, 59, 529-537.	0.9	19
12	The Restless Spinal Cord in Degenerative Cervical Myelopathy. American Journal of Neuroradiology, 2021, 42, 597-609.	1.2	19
13	External Validation Confirms Validity of a Simple Model to Predict Bowel Outcome After Traumatic Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2021, 35, 659-662.	1.4	2
14	Supraspinal nociceptive networks in neuropathic pain after spinal cord injury. Human Brain Mapping, 2021, 42, 3733-3749.	1.9	19
15	Combined Neurophysiologic and Neuroimaging Approach to Reveal the Structure-Function Paradox in Cervical Myelopathy. Neurology, 2021, 97, e1512-e1522.	1.5	11
16	Tracking White and Gray Matter Degeneration along the Spinal Cord Axis in Degenerative Cervical Myelopathy. Journal of Neurotrauma, 2021, 38, 2978-2987.	1.7	19
17	Longitudinal changes of spinal cord grey and white matter following spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1222-1230.	0.9	20
18	Identifying Discomplete Spinal Lesions: New Evidence from Pain-Autonomic Interaction in Spinal Cord Injury. Journal of Neurotrauma, 2021, 38, 3456-3466.	1.7	4

#	Article	IF	CITATIONS
19	Pinprick Evoked Potentials—Reliable Acquisition in Healthy Human Volunteers. Pain Medicine, 2020, 21, 736-746.	0.9	9
20	Cervical Cord Neurodegeneration in Traumatic and Non-Traumatic Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 860-867.	1.7	38
21	Update from TASCI, a Nationwide, Randomized, Sham-controlled, Double-blind Clinical Trial on Transcutaneous Tibial Nerve Stimulation in Patients with Acute Spinal Cord Injury to Prevent Neurogenic Detrusor Overactivity. European Urology Focus, 2020, 6, 877-879.	1.6	6
22	Multiparameter mapping of relaxation (<scp>R1</scp> , <scp>R2</scp> *), proton density and magnetization transfer saturation at <scp>3 T</scp> : A multicenter dualâ€vendor reproducibility and repeatability study. Human Brain Mapping, 2020, 41, 4232-4247.	1.9	59
23	Painâ€autonomic interaction: A surrogate marker of central sensitization. European Journal of Pain, 2020, 24, 2015-2026.	1.4	18
24	TASCI—transcutaneous tibial nerve stimulation in patients with acute spinal cord injury to prevent neurogenic detrusor overactivity: protocol for a nationwide, randomised, sham-controlled, double-blind clinical trial. BMJ Open, 2020, 10, e039164.	0.8	18
25	Comparison of outcomes between people with and without central cord syndrome. Spinal Cord, 2020, 58, 1263-1273.	0.9	9
26	The Effect of Conditioned Pain Modulation on Tonic Heat Pain Assessed Using Participant-Controlled Temperature. Pain Medicine, 2020, 21, 2839-2849.	0.9	7
27	Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury. Neurology, 2020, 95, e805-e814.	1.5	25
28	Degenerative cervical myelopathy — update and future directions. Nature Reviews Neurology, 2020, 16, 108-124.	4.9	264
29	MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurology, The, 2019, 18, 1123-1135.	4.9	125
30	Neurochemical biomarkers in spinal cord injury. Spinal Cord, 2019, 57, 819-831.	0.9	65
31	Bowel Outcome Prediction After Traumatic Spinal Cord Injury: Longitudinal Cohort Study. Neurorehabilitation and Neural Repair, 2019, 33, 902-910.	1.4	14
32	MR Spectroscopy of the Cervical Spinal Cord in Chronic Spinal Cord Injury. Radiology, 2019, 291, 131-138.	3.6	13
33	Natural history of neurological improvement following complete (AIS A) thoracic spinal cord injury across three registries to guide acute clinical trial design and interpretation. Spinal Cord, 2019, 57, 753-762.	0.9	34
	RE-CODE DCM (<i>RE</i> search Objectives and <i>C</i> ommon <i>D</i> ata <i>E</i> lements for) Tj ETQq0 0	U	
34	Efficiency in DCM, Through Establishment of a Standardized Dataset for Clinical Research and the Definition of the Research Priorities. Global Spine Journal, 2019, 9, 65S-76S.	1.2	83
35	Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury. Neurology, 2019, 92, e2793-e2802.	1.5	34
36	Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury. Neurology, 2019, 93, e1550-e1560.	1.5	23

#	Article	IF	CITATIONS
37	Cold evoked potentials: Acquisition from cervical dermatomes. Neurophysiologie Clinique, 2019, 49, 49-57.	1.0	8
38	Progression of Neuropathic Pain after Acute Spinal Cord Injury: A Meta-Analysis and Framework for Clinical Trials. Journal of Neurotrauma, 2019, 36, 1461-1468.	1.7	33
39	Sensorimotor plasticity after spinal cord injury: a longitudinal and translational study. Annals of Clinical and Translational Neurology, 2019, 6, 68-82.	1.7	19
40	Disentangling the Effects of Spinal Cord Injury and Related Neuropathic Pain on Supraspinal Neuroplasticity: A Systematic Review on Neuroimaging. Frontiers in Neurology, 2019, 10, 1413.	1.1	18
41	Contact Heat Evoked Potentials Are Responsive to Peripheral Sensitization: Requisite Stimulation Parameters. Frontiers in Human Neuroscience, 2019, 13, 459.	1.0	11
42	Progressive neurodegeneration following spinal cord injury. Neurology, 2018, 90, e1257-e1266.	1.5	97
43	Prediction of bladder outcomes after ischemic spinal cord injury: A longitudinal cohort study from the European multicenter study about spinal cord injury. Neurourology and Urodynamics, 2018, 37, 1779-1784.	0.8	11
44	The Spinal Cord Ability Ruler (SCAR) complements the Spinal Cord Independence Measure (SCIM). Spinal Cord, 2018, 56, 525-526.	0.9	1
45	Not Hot, but Sharp: Dissociation of Pinprick and Heat Perception in Snake Eye Appearance Myelopathy. Frontiers in Neurology, 2018, 9, 1144.	1.1	4
46	Early neurological care of patients with spinal cord injury. World Journal of Urology, 2018, 36, 1529-1536.	1.2	12
47	Early urological care of patients with spinal cord injury. World Journal of Urology, 2018, 36, 1537-1544.	1.2	36
48	Prediction of autonomic dysreflexia during urodynamics: a prospective cohort study. BMC Medicine, 2018, 16, 53.	2.3	38
49	Thermal grill conditioning: Effect on contact heat evoked potentials. Scientific Reports, 2017, 7, 40007.	1.6	11
50	Upper Limb Recovery in Spinal Cord Injury: Involvement of Central and Peripheral Motor Pathways. Neurorehabilitation and Neural Repair, 2017, 31, 432-441.	1.4	20
51	Early Administration of Gabapentinoids Improves Motor Recovery after Human Spinal Cord Injury. Cell Reports, 2017, 18, 1614-1618.	2.9	44
52	Traumatic spinal cord injury. Nature Reviews Disease Primers, 2017, 3, 17018.	18.1	1,138
53	A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Science Translational Medicine, 2017, 9, .	5.8	42
54	Assessing structure and function of myelin in cervical spondylotic myelopathy. Neurology, 2017, 89, 602-610.	1.5	45

#	Article	IF	CITATIONS
55	Prediction of Bladder Outcomes after Traumatic Spinal Cord Injury: A Longitudinal Cohort Study. PLoS Medicine, 2016, 13, e1002041.	3.9	59
56	Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Scientific Reports, 2016, 6, 24636.	1.6	52
57	Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes. Scientific Reports, 2016, 6, 34660.	1.6	36
58	Spinal cord injury affects the interplay between visual and sensorimotor representations of the body. Scientific Reports, 2016, 6, 20144.	1.6	42
59	Association of pain and CNS structural changes after spinal cord injury. Scientific Reports, 2016, 6, 18534.	1.6	84
60	Embodied neurology: an integrative framework for neurological disorders. Brain, 2016, 139, 1855-1861.	3.7	39
61	Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance. Journal of Neurotrauma, 2016, 33, 1428-1435.	1.7	15
62	Predictive Value of Upper Limb Muscles and Grasp Patterns on Functional Outcome in Cervical Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2016, 30, 295-306.	1.4	28
63	Autonomic dysreflexia and repeatability of cardiovascular changes during same session repeat urodynamic investigation in women with spinal cord injury. World Journal of Urology, 2016, 34, 391-397.	1.2	19
64	Tracking sensory system atrophy and outcome prediction in spinal cord injury. Annals of Neurology, 2015, 78, 751-761.	2.8	77
65	Robot-Assisted Arm Assessments in Spinal Cord Injured Patients: A Consideration of Concept Study. PLoS ONE, 2015, 10, e0126948.	1.1	45
66	Effectiveness of High-Frequency Electrical Stimulation Following Sensitization With Capsaicin. Journal of Pain, 2015, 16, 595-605.	0.7	14
67	Neuroprosthetic technologies to augment the impact of neurorehabilitation after spinal cord injury. Annals of Physical and Rehabilitation Medicine, 2015, 58, 232-237.	1.1	26
68	Neuropathic Pain and Functional Reorganization in the Primary Sensorimotor Cortex After Spinal Cord Injury. Journal of Pain, 2015, 16, 1256-1267.	0.7	48
69	Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 2015, 7, 302ra134.	5.8	148
70	Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Frontiers in Human Neuroscience, 2014, 8, 148.	1.0	46
71	Outcome of the upper limb in cervical spinal cord injury: Profiles of recovery and insights for clinical studies. Journal of Spinal Cord Medicine, 2014, 37, 503-510.	0.7	32
72	Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurology, The, 2014, 13, 159-166.	4.9	473

#	Article	IF	CITATIONS
73	MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurology, The, 2013, 12, 873-881.	4.9	239
74	The impact of post-processing on spinal cord diffusion tensor imaging. NeuroImage, 2013, 70, 377-385.	2.1	59
75	Relationship Between Motor Recovery and Independence After Sensorimotor-Complete Cervical Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2012, 26, 1064-1071.	1.4	73
76	Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2012, 26, 939-948.	1.4	57
77	Functional Motor Preservation Below the Level of Injury in Subjects With American Spinal Injury Association Impairment Scale Grade A Spinal Cord Injuries. Archives of Physical Medicine and Rehabilitation, 2012, 93, 905-907.	0.5	17