Alexei Kiselev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7246002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of ice nucleation in liquid water on alkali feldspars. Faraday Discussions, 2022, 235, 148-161.	3.2	3
2	High-resolution optical constants of crystalline ammonium nitrate for infrared remote sensing of the Asian Tropopause Aerosol Layer. Atmospheric Measurement Techniques, 2021, 14, 1977-1991.	3.1	3
3	Thermal imaging of freezing drizzle droplets: pressure release events as a source of secondary ice particles. Journals of the Atmospheric Sciences, 2021, , .	1.7	5
4	Water uptake of subpollen aerosol particles: hygroscopic growth, cloud condensation nuclei activation, and liquid–liquid phase separation. Atmospheric Chemistry and Physics, 2021, 21, 6999-7022.	4.9	20
5	Effect of chemically induced fracturing on the ice nucleation activity of alkali feldspar. Atmospheric Chemistry and Physics, 2021, 21, 11801-11814.	4.9	11
6	The Influence of Chemical and Mineral Compositions on the Parameterization of Immersion Freezing by Volcanic Ash Particles. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033356.	3.3	6
7	Anomalously High Proton Conduction of Interfacial Water. Journal of Physical Chemistry Letters, 2020, 11, 3623-3628.	4.6	21
8	Secondary Ice Production upon Freezing of Freely Falling Drizzle Droplets. Journals of the Atmospheric Sciences, 2020, 77, 2959-2967.	1.7	34
9	The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures. Atmospheric Chemistry and Physics, 2020, 20, 11089-11117.	4.9	35
10	Heat and water vapor transfer in the wake of a falling ice sphere and its implication for secondary ice formation in clouds. New Journal of Physics, 2019, 21, 043043.	2.9	10
11	Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores. Atmospheric Chemistry and Physics, 2019, 19, 8783-8800.	4.9	29
12	Specifying the light-absorbing properties of aerosol particles in fresh snow samples, collected at the Environmental Research Station Schneefernerhaus (UFS), Zugspitze. Atmospheric Chemistry and Physics, 2019, 19, 10829-10844.	4.9	10
13	A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. Atmospheric Chemistry and Physics, 2019, 19, 4823-4849.	4.9	48
14	Composition, Mixing State and Water Affinity of Meteoric Smoke Analogue Nanoparticles Produced in a Non-Thermal Microwave Plasma Source. Zeitschrift Fur Physikalische Chemie, 2018, 232, 635-648.	2.8	7
15	Initiation of secondary ice production in clouds. Atmospheric Chemistry and Physics, 2018, 18, 1593-1610.	4.9	53
16	The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements. Atmospheric Measurement Techniques, 2018, 11, 6231-6257.	3.1	82
17	Secondary Ice Formation during Freezing of Levitated Droplets. Journals of the Atmospheric Sciences, 2018, 75, 2815-2826.	1.7	76
18	Investigation of Crystal Nucleation of Highly Supersaturated Aqueous KNO ₃ Solution from Single Levitated Droplet Experiments. Crystal Growth and Design, 2018, 18, 4896-4905.	3.0	15

Alexei Kiselev

#	Article	IF	CITATIONS
19	Heterogeneous ice nucleation of <i>î±</i> â€pinene SOA particles before and after ice cloud processing. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4924-4943.	3.3	30
20	Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science, 2017, 355, 367-371.	12.6	231
21	Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on <i>α</i> -alumina (0001). Atmospheric Chemistry and Physics, 2017, 17, 7827-7837.	4.9	52
22	Laser vaporization of cirrus-like ice particles with secondary ice multiplication. Science Advances, 2016, 2, e1501912.	10.3	14
23	Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles. Journal of Chemical Physics, 2016, 145, 244503.	3.0	21
24	A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay. Atmospheric Chemistry and Physics, 2016, 16, 11477-11496.	4.9	97
25	Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism. Atmospheric Chemistry and Physics, 2016, 16, 2025-2042.	4.9	39
26	Observation of viscosity transition in <i>α</i> -pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	4.9	55
27	A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques. Atmospheric Chemistry and Physics, 2015, 15, 2489-2518.	4.9	200
28	Intercomparing different devices for the investigation of ice nucleating particles using Snomax [®] as test substance. Atmospheric Chemistry and Physics, 2015, 15, 1463-1485.	4.9	108
29	Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nature Geoscience, 2015, 8, 273-277.	12.9	105
30	Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles. Atmospheric Chemistry and Physics, 2014, 14, 2315-2324.	4.9	65
31	Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: quantitative size and temperature dependence for illite particles. Faraday Discussions, 2013, 165, 383.	3.2	44
32	On the size dependence of contact freezing probability. , 2013, , .		0
33	Experimental quantification of contact freezing in an electrodynamic balance. Atmospheric Measurement Techniques, 2013, 6, 2373-2382.	3.1	34
34	Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments. Atmospheric Measurement Techniques, 2013, 6, 1041-1052.	3.1	25
35	Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated. Atmospheric Chemistry and Physics, 2012, 12, 4525-4537.	4.9	57
36	On the role of surface charges for homogeneous freezing of supercooled water microdroplets. Physical Chemistry Chemical Physics, 2012, 14, 9359.	2.8	36

Alexei Kiselev

#	Article	IF	CITATIONS
37	Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmospheric Chemistry and Physics, 2011, 11, 11131-11144.	4.9	70
38	lce nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010. Atmospheric Chemistry and Physics, 2011, 11, 12945-12958.	4.9	60
39	Homogeneous and heterogeneous ice nucleation at LACIS: operating principle and theoretical studies. Atmospheric Chemistry and Physics, 2011, 11, 1753-1767.	4.9	68
40	Heterogeneous freezing of droplets with immersed mineral dust particles – measurements and parameterization. Atmospheric Chemistry and Physics, 2010, 10, 3601-3614.	4.9	138
41	The Influence of Algal Exudate on the Hygroscopicity of Sea Spray Particles. Advances in Meteorology, 2010, 2010, 1-11.	1.6	16
42	Intercomparison of cloud condensation nuclei and hygroscopic fraction measurements: Coated soot particles investigated during the LACIS Experiment in November (LExNo). Journal of Geophysical Research, 2010, 115, .	3.3	34
43	Soluble mass, hygroscopic growth, and droplet activation of coated soot particles during LACIS Experiment in November (LExNo). Journal of Geophysical Research, 2010, 115, .	3.3	40
44	Examination of laboratoryâ€generated coated soot particles: An overview of the LACIS Experiment in November (LExNo) campaign. Journal of Geophysical Research, 2010, 115, .	3.3	25
45	Morphological characterization of soot aerosol particles during LACIS Experiment in November (LExNo). Journal of Geophysical Research, 2010, 115, .	3.3	31
46	Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol. Physical Chemistry Chemical Physics, 2009, 11, 8091.	2.8	59
47	LACIS-measurements and parameterization of sea-salt particle hygroscopic growth and activation. Atmospheric Chemistry and Physics, 2008, 8, 579-590.	4.9	61
48	Hygroscopic growth and measured and modeled critical super-saturations of an atmospheric HULIS sample. Geophysical Research Letters, 2007, 34, .	4.0	89
49	Deliquescence and hygroscopic growth of succinic acid particles measured with LACIS. Geophysical Research Letters, 2007, 34, .	4.0	14
50	Mass accommodation coefficient of water: A combined computational fluid dynamics and experimental data analysis. Journal of Geophysical Research, 2007, 112, .	3.3	21
51	Calibration of LACIS as a CCN detector and its use in measuring activation and hygroscopic growth of atmospheric aerosol particles. Atmospheric Chemistry and Physics, 2006, 6, 4519-4527.	4.9	21
52	White-light optical particle spectrometer for in situ measurements of condensational growth of aerosol particles. Applied Optics, 2005, 44, 4693.	2.1	30
53	Measured and modeled equilibrium sizes of NaCl and (NH4)2SO4particles at relative humidities up to 99.1%. Journal of Geophysical Research, 2005, 110, .	3.3	35
54	DEVELOPMENT OF A SINGLE PARTICLE OPTICAL COUNTER FOR IN-SITU MEASUREMENTS OF AEROSOL PARTICLE CONDENSATIONAL GROWTH. Journal of Aerosol Science, 2004, 35, S907-S908.	3.8	0

#	Article	IF	CITATIONS
55	Laboratory Studies and Numerical Simulations of Cloud Droplet Formation under Realistic Supersaturation Conditions. Journal of Atmospheric and Oceanic Technology, 2004, 21, 876-887.	1.3	77