
Luke A Wiley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7245999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration. Molecular Therapy, 2017, 25, 1999-2013.	8.2	121
2	Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13379-13384.	7.1	111
3	Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Progress in Retinal and Eye Research, 2015, 44, 15-35.	15.5	108
4	cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Scientific Reports, 2016, 6, 30742.	3.3	108
5	North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology, 2016, 123, 9-18.	5.2	105
6	Two-photon polymerization for production of human iPSC-derived retinal cell grafts. Acta Biomaterialia, 2017, 55, 385-395.	8.3	76
7	Duplication of TBK1 Stimulates Autophagy in iPSC-derived Retinal Cells from a Patient with Normal Tension Glaucoma. Journal of Stem Cell Research & Therapy, 2014, 04, 161.	0.3	75
8	Hypomorphic mutations in <i>TRNT1</i> cause retinitis pigmentosa with erythrocytic microcytosis. Human Molecular Genetics, 2016, 25, 44-56.	2.9	64
9	CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Progress in Retinal and Eye Research, 2018, 65, 28-49.	15.5	64
10	Impaired autophagy in macrophages promotes inflammatory eye disease. Autophagy, 2016, 12, 1876-1885.	9.1	58
11	Sympathetic Innervation Regulates Basement Membrane Thickening and Pericyte Number in Rat Retina. , 2005, 46, 744.		55
12	Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Human Gene Therapy, 2018, 29, 424-436.	2.7	53
13	Mechanical properties of murine and porcine ocular tissues in compression. Experimental Eye Research, 2014, 121, 194-199.	2.6	51
14	Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications. Biomacromolecules, 2018, 19, 3682-3692.	5.4	51
15	Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomaterialia, 2019, 94, 204-218.	8.3	51
16	Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration. Journal of Pathology, 2016, 238, 446-456.	4.5	47
17	Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells. Biology Open, 2018, 7, .	1.2	46
18	Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1 -associated Retinitis pigmentosa. Stem Cell Research, 2017, 21, 58-70.	0.7	45

LUKE A WILEY

#	Article	IF	CITATIONS
19	The tumor suppressor gene <i>Trp53</i> protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens. DMM Disease Models and Mechanisms, 2011, 4, 484-495.	2.4	38
20	Neuronal Differentiation of Induced Pluripotent Stem Cells on Surfactant Templated Chitosan Hydrogels. Biomacromolecules, 2016, 17, 1684-1695.	5.4	38
21	Generating iPSC-Derived Choroidal Endothelial Cells to Study Age-Related Macular Degeneration. , 2015, 56, 8258.		36
22	Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat <i>CLN3</i> -Associated Retinal Degeneration. Human Gene Therapy, 2016, 27, 835-846.	2.7	29
23	Retinal Tropism and Transduction of Adeno-Associated Virus Varies by Serotype and Route of Delivery (Intravitreal, Subretinal, or Suprachoroidal) in Rats. Human Gene Therapy, 2020, 31, 1288-1299.	2.7	28
24	Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9. Genes, 2019, 10, 278.	2.4	27
25	Superior Cervical Ganglionectomy Induces Changes in Growth Factor Expression in the Rat Retina. , 2006, 47, 439.		22
26	The Tumor Suppressor Merlin Is Required for Cell Cycle Exit, Terminal Differentiation, and Cell Polarity in the Developing Murine Lens. , 2010, 51, 3611.		21
27	Optimizing Donor Cellular Dissociation and Subretinal Injection Parameters for Stem Cell-Based Treatments. Stem Cells Translational Medicine, 2019, 8, 797-809.	3.3	21
28	Concise Review: Patient-Specific Stem Cells to Interrogate Inherited Eye Disease. Stem Cells Translational Medicine, 2016, 5, 132-140.	3.3	19
29	Helper-Dependent Adenovirus Transduces the Human and Rat Retina but Elicits an Inflammatory Reaction When Delivered Subretinally in Rats. Human Gene Therapy, 2019, 30, 1371-1384.	2.7	19
30	Differentiation of Induced Pluripotent Stem Cells to Neural Retinal Precursor Cells on Porous Poly-Lactic-co-Glycolic Acid Scaffolds. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 310-316.	1.4	17
31	Gene Therapy Using Stem Cells. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017434-a017434.	6.2	16
32	Development of High-Resolution Three-Dimensional-Printed Extracellular Matrix Scaffolds and Their Compatibility with Pluripotent Stem Cells and Early Retinal Cells. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 42-55.	1.4	16
33	Visualizing lens epithelial cell proliferation in whole lenses. Molecular Vision, 2010, 16, 1253-9.	1.1	16
34	Generation of Xenoâ€Free, cGMPâ€Compliant Patientâ€Specific iPSCs from Skin Biopsy. Current Protocols in Stem Cell Biology, 2017, 42, 4A.12.1-4A.12.14.	3.0	15
35	CRISPR-Cas9-Mediated Correction of the 1.02 kb Common Deletion in CLN3 in Induced Pluripotent Stem Cells from Patients with Batten Disease. CRISPR Journal, 2018, 1, 75-87.	2.9	15
36	WNT7A/B promote choroidal neovascularization. Experimental Eye Research, 2018, 174, 107-112.	2.6	12

LUKE A WILEY

#	Article	IF	CITATIONS
37	Stem Cells as Tools for Studying the Genetics of Inherited Retinal Degenerations. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017160-a017160.	6.2	11
38	A Method for Sectioning and Immunohistochemical Analysis of Stem Cell–Derived 3â€Ð Organoids. Current Protocols in Stem Cell Biology, 2016, 37, 1C.19.1-1C.19.11.	3.0	11
39	Retinoblastoma protein prevents enteric nervous system defects and intestinal pseudo-obstruction. Journal of Clinical Investigation, 2013, 123, 5152-5164.	8.2	10
40	Biocompatibility of Human Induced Pluripotent Stem Cell–Derived Retinal Progenitor Cell Grafts in Immunocompromised Rats. Cell Transplantation, 2022, 31, 096368972211044.	2.5	9
41	The effect of retinal scaffold modulus on performance during surgical handling. Experimental Eye Research, 2021, 207, 108566.	2.6	5
42	Development and biological characterization of a clinical gene transfer vector for the treatment of MAK-associated retinitis pigmentosa. Gene Therapy, 2021, , .	4.5	5
43	Chimeric Helper-Dependent Adenoviruses Transduce Retinal Ganglion Cells and Müller Cells in Human Retinal Explants. Journal of Ocular Pharmacology and Therapeutics, 2021, 37, 575-579.	1.4	5
44	Prevascularized silicon membranes for the enhancement of transport to implanted medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1602-1609.	3.4	3
45	Expression of the retina-specific flippase, ABCA4, in epidermal keratinocytes. F1000Research, 0, 5, 193.	1.6	3